Obstacle avoidance path planning of space manipulator based on improved RRT algorithm

W. Bai, Xingzhi Xu
{"title":"Obstacle avoidance path planning of space manipulator based on improved RRT algorithm","authors":"W. Bai, Xingzhi Xu","doi":"10.1117/12.2660134","DOIUrl":null,"url":null,"abstract":"The traditional rapid expansion random tree (RRT) algorithm has poor efficiency in the motion planning of the manipulator. Based on the traditional RRT algorithm, this paper introduces the target offset strategy in the process of expanding leaf nodes. When the algorithm falls into a local minimum, it will select the expansion point, so as to quickly break away from the minimum. The improved RRT algorithm and other algorithms are simulated in Mathematica. The experimental results show that the improved algorithm can guide the growth direction of the tree, improve the convergence speed of the algorithm, make it difficult to fall into local minimum, and improve the motion planning efficiency of the manipulator in simulation.","PeriodicalId":329761,"journal":{"name":"International Conference on Informatics Engineering and Information Science","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Informatics Engineering and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2660134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The traditional rapid expansion random tree (RRT) algorithm has poor efficiency in the motion planning of the manipulator. Based on the traditional RRT algorithm, this paper introduces the target offset strategy in the process of expanding leaf nodes. When the algorithm falls into a local minimum, it will select the expansion point, so as to quickly break away from the minimum. The improved RRT algorithm and other algorithms are simulated in Mathematica. The experimental results show that the improved algorithm can guide the growth direction of the tree, improve the convergence speed of the algorithm, make it difficult to fall into local minimum, and improve the motion planning efficiency of the manipulator in simulation.
基于改进RRT算法的空间机械臂避障路径规划
传统的快速展开随机树(RRT)算法在机械臂运动规划中效率较低。本文在传统RRT算法的基础上,引入了叶节点扩展过程中的目标偏移策略。当算法陷入局部最小值时,选择扩展点,以便快速脱离最小值。在Mathematica中对改进的RRT算法和其他算法进行了仿真。实验结果表明,改进算法能够引导树的生长方向,提高算法的收敛速度,不易陷入局部极小,提高了仿真中机械手的运动规划效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信