Intrusion Detection via Multilayer Perceptron using a Low Power Device

F. Florencio, E. Moreno, Hendrik T. Macedo, R. J. P. B. Salgueiro, F. B. Nascimento, F. A. O. Santos
{"title":"Intrusion Detection via Multilayer Perceptron using a Low Power Device","authors":"F. Florencio, E. Moreno, Hendrik T. Macedo, R. J. P. B. Salgueiro, F. B. Nascimento, F. A. O. Santos","doi":"10.1145/3293614.3293642","DOIUrl":null,"url":null,"abstract":"This work investigates the use of Multi-layered Perceptron Networks (MLP) for attack detection, using the Arduino embedded system as a case study. This paper also investigates techniques to reduce the computational cost of ANN (Artificial Neural Networks), taking into account the low cost and low consumption requirements in order to ensure the feasibility of its implementation. As a result, we evaluated the MLP networks using metrics such as accuracy, precision, and coverage, as well as the classifier performance running on Arduino through time measurements (microseconds).","PeriodicalId":359590,"journal":{"name":"Proceedings of the Euro American Conference on Telematics and Information Systems","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Euro American Conference on Telematics and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293614.3293642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work investigates the use of Multi-layered Perceptron Networks (MLP) for attack detection, using the Arduino embedded system as a case study. This paper also investigates techniques to reduce the computational cost of ANN (Artificial Neural Networks), taking into account the low cost and low consumption requirements in order to ensure the feasibility of its implementation. As a result, we evaluated the MLP networks using metrics such as accuracy, precision, and coverage, as well as the classifier performance running on Arduino through time measurements (microseconds).
基于多层感知器的低功耗入侵检测
这项工作调查了多层感知器网络(MLP)用于攻击检测的使用,使用Arduino嵌入式系统作为案例研究。本文还研究了降低人工神经网络计算成本的技术,考虑到低成本和低消耗的要求,以确保其实现的可行性。因此,我们使用准确度、精度和覆盖率等指标来评估MLP网络,以及通过时间测量(微秒)在Arduino上运行的分类器性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信