Feature selection: a multi-objective stochastic optimization approach

S. Rovetta, Grażyna Suchacka, Alberto Cabri, F. Masulli
{"title":"Feature selection: a multi-objective stochastic optimization approach","authors":"S. Rovetta, Grażyna Suchacka, Alberto Cabri, F. Masulli","doi":"10.1109/ICOA49421.2020.9094478","DOIUrl":null,"url":null,"abstract":"The feature subset task can be cast as a multiobjective discrete optimization problem. In this work, we study the search algorithm component of a feature subset selection method. We propose an algorithm based on the threshold accepting method, extended to the multi-objective framework by an appropriate definition of the acceptance rule. The method is used in the task of identifying relevant subsets of features in a Web bot recognition problem, where automated software agents on the Web are identified by analyzing the stream of HTTP requests to a Web server.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The feature subset task can be cast as a multiobjective discrete optimization problem. In this work, we study the search algorithm component of a feature subset selection method. We propose an algorithm based on the threshold accepting method, extended to the multi-objective framework by an appropriate definition of the acceptance rule. The method is used in the task of identifying relevant subsets of features in a Web bot recognition problem, where automated software agents on the Web are identified by analyzing the stream of HTTP requests to a Web server.
特征选择:一种多目标随机优化方法
特征子集任务可以看作是一个多目标离散优化问题。在这项工作中,我们研究了一种特征子集选择方法的搜索算法组件。我们提出了一种基于阈值接受方法的算法,通过适当定义接受规则,将其扩展到多目标框架。该方法用于识别Web机器人识别问题中的相关特征子集,其中通过分析对Web服务器的HTTP请求流来识别Web上的自动软件代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信