Modeling and Passivity-PI Control of a Fuel Cell-Supercapacitor Hybrid Energy Storage System

Li Hao, Yang Fan
{"title":"Modeling and Passivity-PI Control of a Fuel Cell-Supercapacitor Hybrid Energy Storage System","authors":"Li Hao, Yang Fan","doi":"10.1109/ICMRA.2018.8490577","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of controlling a hybrid energy storage system consisted of a Proton Exchange Membrane Fuel Cell (PEMFC) as the main power source and Supercapacitors (SCs) as the auxiliary power source for electrical applications. The energy control strategy aims at reasonably distributing the load power demand into the two different sources and making sure that each source can be optimally used. The energy controller is devised based on the Passivity-Based Control (PBC) method with the Interconnection and Damping Assignment (IDA) technique. Moreover, a complementary PI controller is designed to enhance the robustness of the closed-loop system under system model uncertainties. Simulation results show that the proposed control strategy could help the hybrid system fast response to electrical load demand with strong robustness.","PeriodicalId":190744,"journal":{"name":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRA.2018.8490577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of controlling a hybrid energy storage system consisted of a Proton Exchange Membrane Fuel Cell (PEMFC) as the main power source and Supercapacitors (SCs) as the auxiliary power source for electrical applications. The energy control strategy aims at reasonably distributing the load power demand into the two different sources and making sure that each source can be optimally used. The energy controller is devised based on the Passivity-Based Control (PBC) method with the Interconnection and Damping Assignment (IDA) technique. Moreover, a complementary PI controller is designed to enhance the robustness of the closed-loop system under system model uncertainties. Simulation results show that the proposed control strategy could help the hybrid system fast response to electrical load demand with strong robustness.
燃料电池-超级电容器混合储能系统建模与无源pi控制
本文研究了以质子交换膜燃料电池(PEMFC)为主电源、超级电容器(SCs)为辅电源的混合储能系统的控制问题。能量控制策略的目的是将负荷电力需求合理分配到两个不同的电源上,并保证每个电源都能得到最优的利用。基于无源控制(PBC)方法,结合互连和阻尼分配(IDA)技术,设计了能量控制器。此外,设计了互补PI控制器,增强了系统模型不确定性下闭环系统的鲁棒性。仿真结果表明,该控制策略能使混合动力系统快速响应电力负荷需求,具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信