{"title":"Achieving hardware security for reconfigurable systems on chip by a proof-carrying code approach","authors":"Stephanie Drzevitzky, M. Platzner","doi":"10.1109/ReCoSoC.2011.5981499","DOIUrl":null,"url":null,"abstract":"Reconfigurable systems on chip are increasingly deployed in security and safety critical contexts. When downloading and configuring new hardware functions, we want to make sure that modules adhere to certain security specifications and do not, for example, contain hardware Trojans. As a possible approach to achieving hardware security we propose and demonstrate the concept of proof-carrying hardware, a concept inspired by previous work on proof-carrying code techniques in the software domain. In this paper, we discuss the hardware trust and threat models behind proof-carrying hardware and then present our experimental setup. We detail the employed open-source tool chain for the runtime verification of combinational equivalence and our bitstream format for an abstract FPGA architecture that allows us to experimentally validate the feasibility of our approach.","PeriodicalId":103130,"journal":{"name":"6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2011.5981499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Reconfigurable systems on chip are increasingly deployed in security and safety critical contexts. When downloading and configuring new hardware functions, we want to make sure that modules adhere to certain security specifications and do not, for example, contain hardware Trojans. As a possible approach to achieving hardware security we propose and demonstrate the concept of proof-carrying hardware, a concept inspired by previous work on proof-carrying code techniques in the software domain. In this paper, we discuss the hardware trust and threat models behind proof-carrying hardware and then present our experimental setup. We detail the employed open-source tool chain for the runtime verification of combinational equivalence and our bitstream format for an abstract FPGA architecture that allows us to experimentally validate the feasibility of our approach.