Monocular vision-based range estimation of on-road vehicles

Chih-Ming Hsu, Fei-Hong Chao, Feng‐Li Lian
{"title":"Monocular vision-based range estimation of on-road vehicles","authors":"Chih-Ming Hsu, Fei-Hong Chao, Feng‐Li Lian","doi":"10.1109/ICSSE.2014.6887912","DOIUrl":null,"url":null,"abstract":"This paper presents a monocular vision-based range estimation of on-road vehicles approach. The proposed approach mainly combines non-drivable region from drivable region detection for detection region estimation instead of detecting the whole image, shadow detection for on-road object extraction, vehicle structure points estimation and adjusting for on-road vehicle classification, and motion vector and Kalman filter of on-road vehicles for collision avoiding. Extensive experimentation was performed to demonstrate that the proposed approach can correctly and dynamically estimate the relative distance of on-road vehicles in actual traffic conditions.","PeriodicalId":166215,"journal":{"name":"2014 IEEE International Conference on System Science and Engineering (ICSSE)","volume":"704 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2014.6887912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a monocular vision-based range estimation of on-road vehicles approach. The proposed approach mainly combines non-drivable region from drivable region detection for detection region estimation instead of detecting the whole image, shadow detection for on-road object extraction, vehicle structure points estimation and adjusting for on-road vehicle classification, and motion vector and Kalman filter of on-road vehicles for collision avoiding. Extensive experimentation was performed to demonstrate that the proposed approach can correctly and dynamically estimate the relative distance of on-road vehicles in actual traffic conditions.
基于单目视觉的道路车辆距离估计
提出了一种基于单目视觉的道路车辆距离估计方法。该方法主要结合可驾驶区域中的非可驾驶区域检测来估计检测区域而不是检测整个图像,结合阴影检测来提取道路上目标,结合车辆结构点估计和调整来进行道路车辆分类,结合道路车辆的运动矢量和卡尔曼滤波来避免碰撞。大量的实验表明,该方法能够在实际交通条件下准确、动态地估计道路上车辆的相对距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信