A Predictive Model for R0 (SARS-COV2)

Yasmany Fernández-Fernández, S. Allende-Alonso, Ridelio Miranda-Pérez, Gemayqzel Bouza-Allende, Elia N. Cabrera-Álvarez
{"title":"A Predictive Model for R0 (SARS-COV2)","authors":"Yasmany Fernández-Fernández, S. Allende-Alonso, Ridelio Miranda-Pérez, Gemayqzel Bouza-Allende, Elia N. Cabrera-Álvarez","doi":"10.1109/ICEET56468.2022.10007418","DOIUrl":null,"url":null,"abstract":"Due to the rapid spread of the COVID-19, scientists are constantly monitoring the evolution of the number of infections in a region. In particular, the basic reproductive number (R0) is studied, because it indicates if the number of cases will increase and the infection will last, or if it will decrease and stability will be reached. The present contribution is focused on forecasting this ratio, based on the extreme gradient boosting tree approach. Gradient reinforcement trees are used. Using public data of the COVID-19 outbreak in the Caribbean and some countries, this value is computed.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the rapid spread of the COVID-19, scientists are constantly monitoring the evolution of the number of infections in a region. In particular, the basic reproductive number (R0) is studied, because it indicates if the number of cases will increase and the infection will last, or if it will decrease and stability will be reached. The present contribution is focused on forecasting this ratio, based on the extreme gradient boosting tree approach. Gradient reinforcement trees are used. Using public data of the COVID-19 outbreak in the Caribbean and some countries, this value is computed.
R0 (SARS-COV2)的预测模型
由于COVID-19的快速传播,科学家们正在不断监测一个地区感染人数的演变。特别是对基本繁殖数(R0)进行了研究,因为它表明病例数是否会增加而感染会持续下去,或者是否会减少而达到稳定。目前的贡献集中在预测这一比率,基于极端梯度增强树方法。使用梯度强化树。利用加勒比地区和一些国家的COVID-19疫情的公开数据,计算了这一值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信