Attention-Based Secure Feature Extraction in Near Sensor Processing: Work-in-Progress

Pankaj Bhowmik, Md Jubaer Hossain Pantho, S. Saha, C. Bobda
{"title":"Attention-Based Secure Feature Extraction in Near Sensor Processing: Work-in-Progress","authors":"Pankaj Bhowmik, Md Jubaer Hossain Pantho, S. Saha, C. Bobda","doi":"10.1109/CODESISSS51650.2020.9244036","DOIUrl":null,"url":null,"abstract":"This paper presents a secure hardware architecture of an image sensor to accelerate feature extraction using region-level parallelism. For each logical region, the design includes a region processing unit (RPU) with an attention module (AM). The AM activates the processing in the RPU if there are no spatiotemporal redundancies. It reduces power consumption and data volume by utilizing the concepts of predictive coding. Also, every RPU has a crypto-core driven by the AM to withstand against adversaries. Simulation results show we can save 89.70% power with a significant speedup.","PeriodicalId":437802,"journal":{"name":"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODESISSS51650.2020.9244036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a secure hardware architecture of an image sensor to accelerate feature extraction using region-level parallelism. For each logical region, the design includes a region processing unit (RPU) with an attention module (AM). The AM activates the processing in the RPU if there are no spatiotemporal redundancies. It reduces power consumption and data volume by utilizing the concepts of predictive coding. Also, every RPU has a crypto-core driven by the AM to withstand against adversaries. Simulation results show we can save 89.70% power with a significant speedup.
近传感器处理中基于注意力的安全特征提取:正在研究中
本文提出了一种安全的图像传感器硬件结构,利用区域级并行性来加速特征提取。对于每个逻辑区域,该设计包括一个带有注意模块(AM)的区域处理单元(RPU)。如果没有时空冗余,AM将激活RPU中的处理。它通过利用预测编码的概念来降低功耗和数据量。此外,每个RPU都有一个由AM驱动的加密核心,以抵御对手。仿真结果表明,该方法可以节省89.70%的功耗,并有显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信