A Step Towards Global Counterfactual Explanations: Approximating the Feature Space Through Hierarchical Division and Graph Search

Maximilian Becker, Nadia Burkart, Pascal Birnstill, J. Beyerer
{"title":"A Step Towards Global Counterfactual Explanations: Approximating the Feature Space Through Hierarchical Division and Graph Search","authors":"Maximilian Becker, Nadia Burkart, Pascal Birnstill, J. Beyerer","doi":"10.54364/aaiml.2021.1107","DOIUrl":null,"url":null,"abstract":"The field of Explainable Artificial Intelligence (XAI) tries to make learned models more understandable. One type of explanation for such models are counterfactual explanations. Counterfactual explanations explain the decision for a specific instance, the factual, by providing a similar instance which leads to a different decision, the counterfactual. In this work a new approaches around the idea of counterfactuals was developed. It generates a data structure over the feature space of a classification problem to accelerate the search for counterfactuals and augments them with global explanations. The approach maps the feature space by hierarchically dividing it into regions which belong to the same class. It is applicable in any case where predictions can be generated for input data, even without direct access to the model. The framework works well for lower-dimensional problems but becomes unpractical due to high computation times at around 12 to 15 dimensions.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54364/aaiml.2021.1107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The field of Explainable Artificial Intelligence (XAI) tries to make learned models more understandable. One type of explanation for such models are counterfactual explanations. Counterfactual explanations explain the decision for a specific instance, the factual, by providing a similar instance which leads to a different decision, the counterfactual. In this work a new approaches around the idea of counterfactuals was developed. It generates a data structure over the feature space of a classification problem to accelerate the search for counterfactuals and augments them with global explanations. The approach maps the feature space by hierarchically dividing it into regions which belong to the same class. It is applicable in any case where predictions can be generated for input data, even without direct access to the model. The framework works well for lower-dimensional problems but becomes unpractical due to high computation times at around 12 to 15 dimensions.
向全局反事实解释迈进一步:通过层次划分和图搜索逼近特征空间
可解释人工智能(XAI)领域试图使学习到的模型更容易理解。这种模型的一种解释是反事实解释。反事实解释通过提供一个类似的导致不同决定的反事实的例子来解释特定情况下的决定,即事实。在这项工作中,围绕反事实的思想发展了一种新的方法。它在分类问题的特征空间上生成一个数据结构,以加速对反事实的搜索,并通过全局解释对其进行扩充。该方法通过将特征空间分层划分为属于同一类的区域来映射特征空间。它适用于任何可以为输入数据生成预测的情况,即使没有直接访问模型。该框架可以很好地解决低维问题,但由于在大约12到15维时的高计算时间而变得不实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信