Obstacle detection using sparse stereovision and clustering techniques

Sébastien Kramm, A. Bensrhair
{"title":"Obstacle detection using sparse stereovision and clustering techniques","authors":"Sébastien Kramm, A. Bensrhair","doi":"10.1109/IVS.2012.6232283","DOIUrl":null,"url":null,"abstract":"We present a novel technique for localisation of scene elements through sparse stereovision, targeted at obstacle detection. Applications are autonomous driving or robotics. Given a sparse 3D map computed from low-cost features and with many matching errors, we present a technique that can achieve localisation in a real-time context of all potential obstacles in front of the camera pair. We use v-disparity histograms for identifying relevant depth values, and extract from the 3D map successive subsets of points that correspond to these depth values. We apply a clustering step that provides the corresponding elements localisation. These clusters are then used to build a set of potential obstacles, considered as high level primitives. Experimental results on real images are provided.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present a novel technique for localisation of scene elements through sparse stereovision, targeted at obstacle detection. Applications are autonomous driving or robotics. Given a sparse 3D map computed from low-cost features and with many matching errors, we present a technique that can achieve localisation in a real-time context of all potential obstacles in front of the camera pair. We use v-disparity histograms for identifying relevant depth values, and extract from the 3D map successive subsets of points that correspond to these depth values. We apply a clustering step that provides the corresponding elements localisation. These clusters are then used to build a set of potential obstacles, considered as high level primitives. Experimental results on real images are provided.
基于稀疏立体视觉和聚类技术的障碍物检测
我们提出了一种通过稀疏立体视觉定位场景元素的新技术,目标是障碍物检测。应用包括自动驾驶或机器人。给定从低成本特征和许多匹配错误计算的稀疏3D地图,我们提出了一种技术,可以在相机对前面的所有潜在障碍物的实时背景下实现定位。我们使用v-视差直方图来识别相关的深度值,并从3D地图中提取与这些深度值对应的连续点子集。我们应用集群步骤,提供相应的元素定位。然后使用这些集群构建一组潜在障碍,将其视为高级原语。给出了在真实图像上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信