Morphological filtering of multi-level image using entropy

J. Choi, D. Ko
{"title":"Morphological filtering of multi-level image using entropy","authors":"J. Choi, D. Ko","doi":"10.1109/TENCON.1999.818662","DOIUrl":null,"url":null,"abstract":"This paper presents new properties of the discrete morphological skeleton representation of binary images, for lossless binary image compression, that is based on these properties. We proposed a morphological recognition algorithm using threshold linear superposition theory to analyze the distribution of randomly spaced and oriented blob shaped particles. We recognized the size and position of randomly shaped particles by using the hit/miss transform. We also illustrate the improvement mathematical morphology makes on the entropy thresholding of small targets.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents new properties of the discrete morphological skeleton representation of binary images, for lossless binary image compression, that is based on these properties. We proposed a morphological recognition algorithm using threshold linear superposition theory to analyze the distribution of randomly spaced and oriented blob shaped particles. We recognized the size and position of randomly shaped particles by using the hit/miss transform. We also illustrate the improvement mathematical morphology makes on the entropy thresholding of small targets.
基于熵的多级图像形态学滤波
本文提出了二值图像离散形态骨架表示的新性质,并以此为基础对二值图像进行无损压缩。我们提出了一种基于阈值线性叠加理论的形态识别算法来分析随机间隔和定向的斑点状粒子的分布。我们通过hit/miss变换来识别随机形状粒子的大小和位置。我们还说明了数学形态学对小目标熵阈值的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信