Economic Dispatch in IEEE 26 Bus System using Quantum Behaved Particle Swarm Optimization

P. Saputra, F. Murdianto, R. Firmansyah, K. Widarsono
{"title":"Economic Dispatch in IEEE 26 Bus System using Quantum Behaved Particle Swarm Optimization","authors":"P. Saputra, F. Murdianto, R. Firmansyah, K. Widarsono","doi":"10.1109/iCAST51016.2020.9557625","DOIUrl":null,"url":null,"abstract":"Economic Dispatch (ED) is used to determine the optimal schedule of on-line generating outputs so as to meet the load demand at the minimum operating cost. The researcher usually using conventional method such us Lagrange and more modern methods, Artificial Intelligence, such us Particle Swarm Optimization (PSO), firefly (FA), Genetic Algorithm (GA), etc to solve economic dispatch problem. The newest technology in Artificial Intelligence had invented a new method to solve economic dispatch, it’s named Quantum behaved PSO (QPSO). In this paper, QPSO is applied to solve economic dispatch at IEEE 26 bus system. Then the result will be compared by Lagrange and conventional PSO. Thus, the simulation shows that QPSO has better result than Lagrange and conventional PSO. On IEEE 26 Bus, QPSO can save the cost generation until 55.63 $/h compared with Lagrange, and 3.1 $/h compared by conventional PSO.","PeriodicalId":334854,"journal":{"name":"2020 International Conference on Applied Science and Technology (iCAST)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Applied Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51016.2020.9557625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Economic Dispatch (ED) is used to determine the optimal schedule of on-line generating outputs so as to meet the load demand at the minimum operating cost. The researcher usually using conventional method such us Lagrange and more modern methods, Artificial Intelligence, such us Particle Swarm Optimization (PSO), firefly (FA), Genetic Algorithm (GA), etc to solve economic dispatch problem. The newest technology in Artificial Intelligence had invented a new method to solve economic dispatch, it’s named Quantum behaved PSO (QPSO). In this paper, QPSO is applied to solve economic dispatch at IEEE 26 bus system. Then the result will be compared by Lagrange and conventional PSO. Thus, the simulation shows that QPSO has better result than Lagrange and conventional PSO. On IEEE 26 Bus, QPSO can save the cost generation until 55.63 $/h compared with Lagrange, and 3.1 $/h compared by conventional PSO.
基于量子粒子群优化的ieee26总线系统经济调度
经济调度(Economic Dispatch, ED)是确定在线发电出力的最优调度方案,以保证以最小的运行成本满足负荷需求。研究人员通常采用拉格朗日等传统方法和较现代的人工智能方法,如粒子群优化(PSO)、萤火虫算法(FA)、遗传算法(GA)等来解决经济调度问题。人工智能领域的最新技术发明了一种解决经济调度问题的新方法——量子粒子群算法。本文将量子粒子群算法应用于ieee26总线系统的经济调度。然后将结果用拉格朗日粒子群和常规粒子群进行比较。仿真结果表明,量子粒子群算法优于拉格朗日粒子群算法和传统粒子群算法。在IEEE 26 Bus上,QPSO比Lagrange可节省55.63美元/h的发电成本,比传统PSO节省3.1美元/h的发电成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信