Efficient Shaped-Beam Reflectarray Design Using Machine Learning Techniques

D. R. Prado, J. A. López-Fernández, M. Arrebola, G. Goussetis
{"title":"Efficient Shaped-Beam Reflectarray Design Using Machine Learning Techniques","authors":"D. R. Prado, J. A. López-Fernández, M. Arrebola, G. Goussetis","doi":"10.23919/eumc.2018.8541763","DOIUrl":null,"url":null,"abstract":"This papers introduces the use of machine learning techniques for an efficient design of shaped-beam reflectarrays considerably accelerating the overall process while providing accurate results. The technique is based on the use of Support Vector Machines (SVMs) for the characterization of the reflection coefficient matrix, which provides an efficient way for deriving the scattering parameters associated with the unit cell dimensions. In this way, the SVMs are used within the design process to obtain a reflectarray layout instead of a Full-Wave analysis tool based on Local Periodicity (FW-LP). The accuracy of the SVMs is assessed and the influence of the discretization of the angle of incidence is studied. Finally, a considerable acceleration is achieved with regard to the FW-LP and other works in the literature employing Artificial Neural Networks.","PeriodicalId":171460,"journal":{"name":"2018 15th European Radar Conference (EuRAD)","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eumc.2018.8541763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This papers introduces the use of machine learning techniques for an efficient design of shaped-beam reflectarrays considerably accelerating the overall process while providing accurate results. The technique is based on the use of Support Vector Machines (SVMs) for the characterization of the reflection coefficient matrix, which provides an efficient way for deriving the scattering parameters associated with the unit cell dimensions. In this way, the SVMs are used within the design process to obtain a reflectarray layout instead of a Full-Wave analysis tool based on Local Periodicity (FW-LP). The accuracy of the SVMs is assessed and the influence of the discretization of the angle of incidence is studied. Finally, a considerable acceleration is achieved with regard to the FW-LP and other works in the literature employing Artificial Neural Networks.
利用机器学习技术设计高效异形光束反射阵列
本文介绍了使用机器学习技术来有效地设计形束反射射线,大大加快了整个过程,同时提供了准确的结果。该技术基于支持向量机(svm)对反射系数矩阵的表征,为导出与单元尺寸相关的散射参数提供了一种有效的方法。这样,在设计过程中使用支持向量机来获得反射布局,而不是基于局部周期性(FW-LP)的全波分析工具。评估了支持向量机的精度,研究了入射角离散化对支持向量机精度的影响。最后,在使用人工神经网络的FW-LP和文献中的其他工作方面实现了相当大的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信