{"title":"The design of LEO: A 2D bipedal walking robot for online autonomous Reinforcement Learning","authors":"E. Schuitema, M. Wisse, T. Ramakers, P. Jonker","doi":"10.1109/IROS.2010.5650765","DOIUrl":null,"url":null,"abstract":"Real robots demonstrating online Reinforcement Learning (RL) to learn new tasks are hard to find. The specific properties and limitations of real robots have a large impact on their suitability for RL experiments. In this work, we derive the main hardware and software requirements that a RL robot should fulfill, and present our biped robot LEO that was specifically designed to meet these requirements. We verify its aptitude in autonomous walking experiments using a pre-programmed controller. Although there is room for improvement in the design, the robot was able to walk, fall and stand up without human intervention for 8 hours, during which it made over 43; 000 footsteps.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5650765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Real robots demonstrating online Reinforcement Learning (RL) to learn new tasks are hard to find. The specific properties and limitations of real robots have a large impact on their suitability for RL experiments. In this work, we derive the main hardware and software requirements that a RL robot should fulfill, and present our biped robot LEO that was specifically designed to meet these requirements. We verify its aptitude in autonomous walking experiments using a pre-programmed controller. Although there is room for improvement in the design, the robot was able to walk, fall and stand up without human intervention for 8 hours, during which it made over 43; 000 footsteps.