Word classification for sign language synthesizer using hidden Markov model

H. A. Maarif, Rini Akmeliawati, Z. Htike, T. Gunawan
{"title":"Word classification for sign language synthesizer using hidden Markov model","authors":"H. A. Maarif, Rini Akmeliawati, Z. Htike, T. Gunawan","doi":"10.1109/ICT4M.2014.7020617","DOIUrl":null,"url":null,"abstract":"Sign Language Synthesizer is an algorithm developed to provide signing animation from verbal/spoken language. Word classification in Natural Language Processing (NLP) is required to determine grammatically processed sentences for sign language synthesizer. The correct word position of output can provide understanding to users who use sign language synthesizer tools. In this paper, the Hidden Markov Model is proposed and implemented to process the words and locate their corresponding position correctly. The classification was done for Malay language and has resulted in an average accuracy of 74.67 %.","PeriodicalId":327033,"journal":{"name":"The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT4M.2014.7020617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sign Language Synthesizer is an algorithm developed to provide signing animation from verbal/spoken language. Word classification in Natural Language Processing (NLP) is required to determine grammatically processed sentences for sign language synthesizer. The correct word position of output can provide understanding to users who use sign language synthesizer tools. In this paper, the Hidden Markov Model is proposed and implemented to process the words and locate their corresponding position correctly. The classification was done for Malay language and has resulted in an average accuracy of 74.67 %.
基于隐马尔可夫模型的手语合成器词分类
手语合成器是一种算法开发提供手语动画从口头/口语。自然语言处理(NLP)中的词分类是确定手语合成器中语法处理语句的必要条件。输出的正确单词位置可以为使用手语合成器工具的用户提供理解。本文提出并实现了隐马尔可夫模型来对单词进行处理并正确定位其对应的位置。该分类是针对马来语进行的,结果平均准确率为74.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信