Boosting very-high radix division with prescaling and selection by rounding

P. Montuschi, T. Lang
{"title":"Boosting very-high radix division with prescaling and selection by rounding","authors":"P. Montuschi, T. Lang","doi":"10.1109/ARITH.1999.762828","DOIUrl":null,"url":null,"abstract":"An extension of the very-high radix division with prescaling and selection by rounding is presented. This extension consists in increasing the effective radix of the implementation by obtaining a few additional bits of the quotient per iteration, without increasing the complexity of the unit to obtain the prescaling factor nor the delay of an iteration. As a consequence, for some values of the effective radix, it permits an implementation with a smaller area and the same execution time than the original scheme. Estimations are given for 54-bit and 114-bit quotients.","PeriodicalId":434169,"journal":{"name":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1999.762828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

An extension of the very-high radix division with prescaling and selection by rounding is presented. This extension consists in increasing the effective radix of the implementation by obtaining a few additional bits of the quotient per iteration, without increasing the complexity of the unit to obtain the prescaling factor nor the delay of an iteration. As a consequence, for some values of the effective radix, it permits an implementation with a smaller area and the same execution time than the original scheme. Estimations are given for 54-bit and 114-bit quotients.
通过预缩放和舍入选择来提高非常高的基数除法
提出了一种带预标度和舍入选择的高基数除法的扩展。这种扩展包括通过每次迭代获得商的几个额外位来增加实现的有效基数,而不增加单元的复杂性来获得预标度因子,也不增加迭代的延迟。因此,对于有效基数的某些值,它允许使用比原始方案更小的面积和相同的执行时间实现。给出了54位和114位商的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信