AI Computing in Light of 2.5D Interconnect Roadmap: Big-Little Chiplets for In-memory Acceleration

Zhenyu Wang, Gopikrishnan Raveendran Nair, Gokul Krishnan, Sumit K. Mandal, Ninoo Cherian, Jae-sun Seo, C. Chakrabarti, U. Ogras, Yu Cao
{"title":"AI Computing in Light of 2.5D Interconnect Roadmap: Big-Little Chiplets for In-memory Acceleration","authors":"Zhenyu Wang, Gopikrishnan Raveendran Nair, Gokul Krishnan, Sumit K. Mandal, Ninoo Cherian, Jae-sun Seo, C. Chakrabarti, U. Ogras, Yu Cao","doi":"10.1109/IEDM45625.2022.10019406","DOIUrl":null,"url":null,"abstract":"The demands on bandwidth, latency and energy efficiency are ever increasing in AI computing. Chiplets, connected by 2. 5D interconnect, promise a scalable platform to meet such needs. We present a pathfinding study to bridge AI algorithms with the chiplet architecture, covering in memory computing (IMC), network-on-package (NoP), and heterogeneous architecture. This study is enabled by our newly developed benchmarking tool, SIAM. We perform simulations on representative algorithms (DNNs, transformers and GCNs). Particular contributions include: (1) A roadmap of 2. 5D interconnect for technological exploration; (2) A generic mapping and optimization methodology that reveals various bandwidth needs in AI computing, where the evolution of 2.5D interconnect can or cannot support; (3) A big-little chiplet architecture that matches the non-uniform nature of AI algorithms and achieves >100× improvement in EDP. Overall, heterogeneous big-little chiplets with 2. 5D interconnect advance AI computing to the next level of data movement and computing efficiency.","PeriodicalId":275494,"journal":{"name":"2022 International Electron Devices Meeting (IEDM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM45625.2022.10019406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The demands on bandwidth, latency and energy efficiency are ever increasing in AI computing. Chiplets, connected by 2. 5D interconnect, promise a scalable platform to meet such needs. We present a pathfinding study to bridge AI algorithms with the chiplet architecture, covering in memory computing (IMC), network-on-package (NoP), and heterogeneous architecture. This study is enabled by our newly developed benchmarking tool, SIAM. We perform simulations on representative algorithms (DNNs, transformers and GCNs). Particular contributions include: (1) A roadmap of 2. 5D interconnect for technological exploration; (2) A generic mapping and optimization methodology that reveals various bandwidth needs in AI computing, where the evolution of 2.5D interconnect can or cannot support; (3) A big-little chiplet architecture that matches the non-uniform nature of AI algorithms and achieves >100× improvement in EDP. Overall, heterogeneous big-little chiplets with 2. 5D interconnect advance AI computing to the next level of data movement and computing efficiency.
基于2.5D互联路线图的人工智能计算:内存加速的大小芯片
人工智能计算对带宽、延迟和能效的要求不断提高。小片,由2连接。5D互联,承诺一个可扩展的平台来满足这些需求。我们提出了一项寻路研究,以桥接AI算法与芯片架构,涵盖内存计算(IMC),包上网络(NoP)和异构架构。这项研究是由我们新开发的基准测试工具SIAM实现的。我们对代表性算法(dnn,变压器和GCNs)进行了仿真。特别的贡献包括:(1)2的路线图。5D互联技术探索;(2)一种通用的映射和优化方法,揭示了人工智能计算中的各种带宽需求,其中2.5D互连的发展可以或不支持;(3)大-小芯片架构,匹配AI算法的非均匀性,EDP提高100倍。总体上,异质大-小晶片具有2。5D互联将人工智能计算提升到数据移动和计算效率的新水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信