S. Nattama, M. Rahimi, A. Wadajkar, B. Koppolu, J. Hua, F. Nwariaku, K. Nguyen
{"title":"Characterization of Polymer Coated Magnetic Nanoparticles for Targeted Treatment of Cancer","authors":"S. Nattama, M. Rahimi, A. Wadajkar, B. Koppolu, J. Hua, F. Nwariaku, K. Nguyen","doi":"10.1109/EMBSW.2007.4454167","DOIUrl":null,"url":null,"abstract":"The objective of this project is to develop and characterize a targeted drug delivery vehicle capable of the controlled release of chemotherapy to treat malignant tumors. Our construct consists of a magnetic core with a thermosensitive polymer (N-isopropylacrylamide, NIPA) shell. The advantage of this system is that a magnetic field can be used for targeting the construct as well as to induce heat for hyperthermia treatment. Furthermore, the drug can be loaded into the NIPA layer and released when the temperature reaches its lower critical solution temperature (LCST). Drug release studies were used to characterize the thermoresponsive properties of the construct. Cellular uptake and cytotoxicity studies were also performed to determine in vitro behavior. Our NIPA-magnetic nanoparticle presents a unique and effective method of treating many cancers while reducing the deleterious effects associated with traditional drug delivery methods.","PeriodicalId":333843,"journal":{"name":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSW.2007.4454167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The objective of this project is to develop and characterize a targeted drug delivery vehicle capable of the controlled release of chemotherapy to treat malignant tumors. Our construct consists of a magnetic core with a thermosensitive polymer (N-isopropylacrylamide, NIPA) shell. The advantage of this system is that a magnetic field can be used for targeting the construct as well as to induce heat for hyperthermia treatment. Furthermore, the drug can be loaded into the NIPA layer and released when the temperature reaches its lower critical solution temperature (LCST). Drug release studies were used to characterize the thermoresponsive properties of the construct. Cellular uptake and cytotoxicity studies were also performed to determine in vitro behavior. Our NIPA-magnetic nanoparticle presents a unique and effective method of treating many cancers while reducing the deleterious effects associated with traditional drug delivery methods.