{"title":"Nonexistence and parameter range estimates for convolution differential equations","authors":"C. Goodrich","doi":"10.1090/bproc/130","DOIUrl":null,"url":null,"abstract":"<p>We consider nonlocal differential equations with convolution coefficients of the form <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus upper M left-parenthesis left-parenthesis a asterisk u Superscript q Baseline right-parenthesis left-parenthesis 1 right-parenthesis right-parenthesis u left-parenthesis t right-parenthesis equals lamda f left-parenthesis t comma u left-parenthesis t right-parenthesis right-parenthesis comma t element-of left-parenthesis 0 comma 1 right-parenthesis comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>a</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation} -M\\Big (\\big (a*u^q\\big )(1)\\Big )u(t)=\\lambda f\\big (t,u(t)\\big ),t\\in (0,1),\\notag \\end{equation}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n and we demonstrate an explicit range of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which this problem, subject to given boundary data, will not admit a nontrivial positive solution; if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a identical-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a\\equiv 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the model case <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus upper M left-parenthesis double-vertical-bar u double-vertical-bar Subscript upper L Sub Superscript q Subscript left-parenthesis 0 comma 1 right-parenthesis Superscript q Baseline right-parenthesis u left-parenthesis t right-parenthesis equals lamda f left-parenthesis t comma u left-parenthesis t right-parenthesis right-parenthesis comma t element-of left-parenthesis 0 comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>u</mml:mi>\n <mml:msubsup>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>q</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation} -M\\Big (\\Vert u\\Vert _{L^q(0,1)}^{q}\\Big )u(t)=\\lambda f\\big (t,u(t)\\big ),t\\in (0,1)\\notag \\end{equation}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n is obtained. The range of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is calculable in terms of initial data, and our results allow for a variety of kernels, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a\">\n <mml:semantics>\n <mml:mi>a</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">a</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, to be utilized, including, for example, those leading to a fractional integral coefficient of Riemann-Liouville type. Two examples are provided in order to illustrate the application of the result.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider nonlocal differential equations with convolution coefficients of the form −M((a∗uq)(1))u(t)=λf(t,u(t)),t∈(0,1),\begin{equation} -M\Big (\big (a*u^q\big )(1)\Big )u(t)=\lambda f\big (t,u(t)\big ),t\in (0,1),\notag \end{equation}
and we demonstrate an explicit range of λ\lambda for which this problem, subject to given boundary data, will not admit a nontrivial positive solution; if a≡1a\equiv 1, then the model case −M(‖u‖Lq(0,1)q)u(t)=λf(t,u(t)),t∈(0,1)\begin{equation} -M\Big (\Vert u\Vert _{L^q(0,1)}^{q}\Big )u(t)=\lambda f\big (t,u(t)\big ),t\in (0,1)\notag \end{equation}
is obtained. The range of λ\lambda is calculable in terms of initial data, and our results allow for a variety of kernels, aa, to be utilized, including, for example, those leading to a fractional integral coefficient of Riemann-Liouville type. Two examples are provided in order to illustrate the application of the result.