Trust region based stochastic optimization with adaptive restart: A family of global optimization algorithms

L. Mathesen, Giulia Pedrielli, S. Ng
{"title":"Trust region based stochastic optimization with adaptive restart: A family of global optimization algorithms","authors":"L. Mathesen, Giulia Pedrielli, S. Ng","doi":"10.1109/WSC.2017.8247943","DOIUrl":null,"url":null,"abstract":"The field of simulation optimization has seen algorithms proposed for local optimization, drawing upon different locally convergent search methods. Similarly, there are numerous global optimization algorithms with differing strategies to achieve convergence. In this paper, we look specifically into meta-model based algorithms that stochastically drive global search through an optimal sampling criteria evaluated over a constructed meta-model of the predicted response considering the uncertainty of the response. We propose Trust Region Based Optimization with Adaptive Restart (TBOAR), a family of algorithms that dynamically restarts a trust region based search method via an optimal sampling criteria derived upon a meta-model based global search approach. Additionally, we propose a new sampling criteria to reconcile undesirable adaptive restart trajectories. This paper presents preliminary results showing the advantage of the proposed approach over the benchmark Efficient Global Optimization algorithm, focusing on a deterministic black box simulator with a d-dimensional input and a one-dimensional response.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The field of simulation optimization has seen algorithms proposed for local optimization, drawing upon different locally convergent search methods. Similarly, there are numerous global optimization algorithms with differing strategies to achieve convergence. In this paper, we look specifically into meta-model based algorithms that stochastically drive global search through an optimal sampling criteria evaluated over a constructed meta-model of the predicted response considering the uncertainty of the response. We propose Trust Region Based Optimization with Adaptive Restart (TBOAR), a family of algorithms that dynamically restarts a trust region based search method via an optimal sampling criteria derived upon a meta-model based global search approach. Additionally, we propose a new sampling criteria to reconcile undesirable adaptive restart trajectories. This paper presents preliminary results showing the advantage of the proposed approach over the benchmark Efficient Global Optimization algorithm, focusing on a deterministic black box simulator with a d-dimensional input and a one-dimensional response.
基于信任域的自适应重启随机优化:一类全局优化算法
在仿真优化领域,利用不同的局部收敛搜索方法,提出了局部优化算法。同样,有许多全局优化算法采用不同的策略来实现收敛。在本文中,我们特别研究了基于元模型的算法,该算法通过在考虑响应的不确定性的预测响应的构建元模型上评估的最优抽样标准随机驱动全局搜索。我们提出了基于信任域的自适应重启优化(TBOAR)算法,该算法通过基于元模型的全局搜索方法衍生的最优采样标准动态重启基于信任域的搜索方法。此外,我们提出了一个新的采样准则,以调和不良的自适应重启轨迹。本文给出了初步结果,显示了所提出的方法优于基准的高效全局优化算法,重点是具有d维输入和一维响应的确定性黑盒模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信