{"title":"Adams-type maps are not stable under composition","authors":"Robert Burklund, Ishan Levy, Piotr Pstrkagowski","doi":"10.1090/bproc/137","DOIUrl":null,"url":null,"abstract":"<p>We give a simple counterexample to the plausible conjecture that Adams-type maps of ring spectra are stable under composition. We then show that over a field, this failure is quite extreme, as any map to an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper E Subscript normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">E</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {E}_{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra is a transfinite composition of Adams-type maps.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We give a simple counterexample to the plausible conjecture that Adams-type maps of ring spectra are stable under composition. We then show that over a field, this failure is quite extreme, as any map to an E∞\mathbb {E}_{\infty }-kk-algebra is a transfinite composition of Adams-type maps.