Electrical Parameters Prediction for Fab-to-Fab IC Product Migration

Alecsandra Rusu, Ingrid Kovacs, Bianca-Raluca Cărbunescu, M. Topa, Andi Buzo, G. Pelz
{"title":"Electrical Parameters Prediction for Fab-to-Fab IC Product Migration","authors":"Alecsandra Rusu, Ingrid Kovacs, Bianca-Raluca Cărbunescu, M. Topa, Andi Buzo, G. Pelz","doi":"10.1109/SIITME53254.2021.9663703","DOIUrl":null,"url":null,"abstract":"In the case of production migration of a specific semiconductor device from one fabrication plant to another, yield estimation in the target fab can be accelerated by employing information from the source fab, assuming that the process parameter distributions in the two fabrication plants are similar, but not the same. In this paper, we employ a five-block yield estimation methodology with different methods of feature selection and prediction, which are based on the same operating scheme but in which the method of features selection and the algorithm used for efficient yield prediction of a device in the target fab, vary. Each of the five blocks adopts prior knowledge from the source fab in order to predict the yield in the target fab. The methods used for features selection are Pearson Correlation Coefficient, Distance Correlation, Maximal Information Coefficient (MIC) and Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso). Linear Regression, Polynomial Regression and Multivariate Adaptive Regression Splines (MARS) are the algorithms used to obtain quick and accurate yield estimates at the onset of production in the target fab.","PeriodicalId":426485,"journal":{"name":"2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIITME53254.2021.9663703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the case of production migration of a specific semiconductor device from one fabrication plant to another, yield estimation in the target fab can be accelerated by employing information from the source fab, assuming that the process parameter distributions in the two fabrication plants are similar, but not the same. In this paper, we employ a five-block yield estimation methodology with different methods of feature selection and prediction, which are based on the same operating scheme but in which the method of features selection and the algorithm used for efficient yield prediction of a device in the target fab, vary. Each of the five blocks adopts prior knowledge from the source fab in order to predict the yield in the target fab. The methods used for features selection are Pearson Correlation Coefficient, Distance Correlation, Maximal Information Coefficient (MIC) and Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso). Linear Regression, Polynomial Regression and Multivariate Adaptive Regression Splines (MARS) are the algorithms used to obtain quick and accurate yield estimates at the onset of production in the target fab.
晶圆厂到晶圆厂集成电路产品迁移的电气参数预测
在特定半导体器件的生产从一个制造厂迁移到另一个制造厂的情况下,假设两个制造厂的工艺参数分布相似,但不相同,则可以通过使用来自源厂的信息来加速目标厂的良率估计。在本文中,我们采用了一种具有不同特征选择和预测方法的五块良率估计方法,这些方法基于相同的操作方案,但其中特征选择方法和用于有效预测目标晶圆厂器件良率的算法有所不同。五个模块中的每一个都采用源晶圆厂的先验知识来预测目标晶圆厂的成品率。用于特征选择的方法有Pearson相关系数、距离相关系数、最大信息系数(MIC)和Hilbert-Schmidt独立准则Lasso (HSIC Lasso)。线性回归,多项式回归和多元自适应回归样条(MARS)是用于在目标晶圆厂生产开始时获得快速准确的产量估计的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信