An integrated algorithm for NRSFM with RIKs

Yuan Fang, Zhanli Sun, L. Shang
{"title":"An integrated algorithm for NRSFM with RIKs","authors":"Yuan Fang, Zhanli Sun, L. Shang","doi":"10.1109/ICICIP.2014.7010305","DOIUrl":null,"url":null,"abstract":"In this paper, an integrated algorithm is proposed to reduce the fluctuation of the NRSFM-RIKs algorithm caused by the parameter variation. In the proposed method, a grid division is first performed on the possible interval of parameters. Then, each group of values is set as the parameter values of the NRSFM-RIKs algorithm to estimate the 3D coordinates of feature points. Finally, the estimated 3D coordinates are integrated, and used as the final estimations. The experimental results on several widely used sequences demonstrate the feasibility and effectiveness of the proposed method.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an integrated algorithm is proposed to reduce the fluctuation of the NRSFM-RIKs algorithm caused by the parameter variation. In the proposed method, a grid division is first performed on the possible interval of parameters. Then, each group of values is set as the parameter values of the NRSFM-RIKs algorithm to estimate the 3D coordinates of feature points. Finally, the estimated 3D coordinates are integrated, and used as the final estimations. The experimental results on several widely used sequences demonstrate the feasibility and effectiveness of the proposed method.
基于RIKs的NRSFM集成算法
针对NRSFM-RIKs算法由于参数变化而产生的波动,本文提出了一种集成算法。在该方法中,首先对参数的可能区间进行网格划分。然后,将每组值设置为NRSFM-RIKs算法的参数值,用于估计特征点的三维坐标。最后,对估计的三维坐标进行积分,作为最终的估计。在多个常用序列上的实验结果验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信