Analysis and Hardware Optimization of Lattice Post-Quantum Cryptography Workloads

Sandhya Koteshwara, M. Kumar, P. Pattnaik
{"title":"Analysis and Hardware Optimization of Lattice Post-Quantum Cryptography Workloads","authors":"Sandhya Koteshwara, M. Kumar, P. Pattnaik","doi":"10.1145/3458903.3458905","DOIUrl":null,"url":null,"abstract":"The mathematical constructs, nature of computations and challenges in optimizing lattice post-quantum cryptographic algorithms on modern many-core processors are discussed in this paper. Identification of time-consuming functions and subsequent hardware optimization using vector units and hardware accelerators of one of the candidates, CRYSTALS-Kyber, leads to performance improvement of around 52% for its SHA3 variant and 83% for its AES variant. Detailed Cycles-per-Instruction (CPI) stack breakdown before and after optimization indicates a CPI of around 0.5 and dominance of load/store operations in these workloads.","PeriodicalId":141766,"journal":{"name":"Hardware and Architectural Support for Security and Privacy","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hardware and Architectural Support for Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458903.3458905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mathematical constructs, nature of computations and challenges in optimizing lattice post-quantum cryptographic algorithms on modern many-core processors are discussed in this paper. Identification of time-consuming functions and subsequent hardware optimization using vector units and hardware accelerators of one of the candidates, CRYSTALS-Kyber, leads to performance improvement of around 52% for its SHA3 variant and 83% for its AES variant. Detailed Cycles-per-Instruction (CPI) stack breakdown before and after optimization indicates a CPI of around 0.5 and dominance of load/store operations in these workloads.
点阵后量子加密工作负载分析与硬件优化
本文讨论了在现代多核处理器上优化格子后量子密码算法的数学结构、计算性质和挑战。使用其中一个候选算法CRYSTALS-Kyber的矢量单元和硬件加速器识别耗时的函数和随后的硬件优化,使其SHA3变体的性能提高了约52%,AES变体的性能提高了83%。优化前后的每条指令周期(Cycles-per-Instruction, CPI)堆栈详细细分表明,CPI约为0.5,并且在这些工作负载中负载/存储操作占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信