AutoCOT - AutoEncoder Based Cooperative Training for Sparse Recommendation

Rong Bai, Haiping Zhu, Y. Ni, Yan Chen, Q. Zheng
{"title":"AutoCOT - AutoEncoder Based Cooperative Training for Sparse Recommendation","authors":"Rong Bai, Haiping Zhu, Y. Ni, Yan Chen, Q. Zheng","doi":"10.1109/ICEBE.2018.00049","DOIUrl":null,"url":null,"abstract":"Currently, data sparseness problem caused by large amount of data has resulted in low recommendation quality of traditional recommendation algorithms. Aiming at this problem, this paper proposes an auto-encoder recommendation algorithm based on cooperative training (AutoCOT) that combines the auto-encoder framework with cooperative training (COT) model, which can not only better learn the non-linear relationship of data but alleviate the data sparseness problem, especially in large amount of user and item data. The experiments show that, on Movielen datasets, AutoCOT performs better in coverage, precision and recall rate when compares with the traditional collaborative filtering algorithms and pure auto-encoder recommendation algorithms.","PeriodicalId":221376,"journal":{"name":"2018 IEEE 15th International Conference on e-Business Engineering (ICEBE)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Currently, data sparseness problem caused by large amount of data has resulted in low recommendation quality of traditional recommendation algorithms. Aiming at this problem, this paper proposes an auto-encoder recommendation algorithm based on cooperative training (AutoCOT) that combines the auto-encoder framework with cooperative training (COT) model, which can not only better learn the non-linear relationship of data but alleviate the data sparseness problem, especially in large amount of user and item data. The experiments show that, on Movielen datasets, AutoCOT performs better in coverage, precision and recall rate when compares with the traditional collaborative filtering algorithms and pure auto-encoder recommendation algorithms.
基于自动编码器的稀疏推荐协同训练
目前,由于数据量大导致的数据稀疏性问题,导致传统推荐算法的推荐质量较低。针对这一问题,本文提出了一种基于合作训练的自编码器推荐算法(AutoCOT),该算法将自编码器框架与合作训练(COT)模型相结合,不仅可以更好地学习数据之间的非线性关系,而且可以缓解数据稀疏问题,特别是在大量用户和项目数据中。实验表明,在Movielen数据集上,与传统的协同过滤算法和纯自编码器推荐算法相比,AutoCOT在覆盖率、准确率和召回率方面都有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信