Hardware implementation of Naïve Bayes classifier: A cost effective technique

Himanshu Ranjan Seth, H. Banka
{"title":"Hardware implementation of Naïve Bayes classifier: A cost effective technique","authors":"Himanshu Ranjan Seth, H. Banka","doi":"10.1109/RAIT.2016.7507913","DOIUrl":null,"url":null,"abstract":"To distinguish the classes of unknown data, classification is an important technique. If implemented on hardware these techniques provide more accuracy, faster response in real time predictions than any software implementation. Existing hardware implementations are not at all cost effective, and require specific knowledge of hardware platform. In this paper a cost effective implementation of a statistical classifier has been proposed on Raspberry Pi, an open source hardware platform. This proposed implementation provides on board training of the classifier and real time class prediction. Moreover, it does not require knowledge about the hardware platform to classify the data.","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To distinguish the classes of unknown data, classification is an important technique. If implemented on hardware these techniques provide more accuracy, faster response in real time predictions than any software implementation. Existing hardware implementations are not at all cost effective, and require specific knowledge of hardware platform. In this paper a cost effective implementation of a statistical classifier has been proposed on Raspberry Pi, an open source hardware platform. This proposed implementation provides on board training of the classifier and real time class prediction. Moreover, it does not require knowledge about the hardware platform to classify the data.
Naïve贝叶斯分类器的硬件实现:一种成本有效的技术
为了区分未知数据的类别,分类是一项重要的技术。如果在硬件上实现,这些技术可以提供比任何软件实现更准确、更快的实时预测响应。现有的硬件实现完全没有成本效益,并且需要特定的硬件平台知识。本文在开源硬件平台树莓派(Raspberry Pi)上提出了一种经济有效的统计分类器实现方法。这个提议的实现提供了对分类器的机上训练和实时分类预测。此外,它不需要硬件平台的知识来对数据进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信