Micromachined drilling of dielectric substrates of varying bandgap using laser accelerated particles

Tirtha Mitra, A. Brown, J. Talghader
{"title":"Micromachined drilling of dielectric substrates of varying bandgap using laser accelerated particles","authors":"Tirtha Mitra, A. Brown, J. Talghader","doi":"10.1109/OMN.2017.8051486","DOIUrl":null,"url":null,"abstract":"It has been observed that absorbing particles accelerated by Continuous Wave (CW) lasers initiate catastrophic failure in the form of micromachined drill holes. This process was tested using stainless steel, PMMA, and silica particles with fused silica, sapphire, and spinel substrates. Hole drilling occurred at laser power densities as low as 250kW/cm2, far below the damage thresholds seen in typical situations. A potential dependence of accelerated particle breakdown on substrate bandgap may suggest that the underlying physical process is similar to that seen for CW laser breakdown of contaminated optical coatings.","PeriodicalId":411243,"journal":{"name":"2017 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2017.8051486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It has been observed that absorbing particles accelerated by Continuous Wave (CW) lasers initiate catastrophic failure in the form of micromachined drill holes. This process was tested using stainless steel, PMMA, and silica particles with fused silica, sapphire, and spinel substrates. Hole drilling occurred at laser power densities as low as 250kW/cm2, far below the damage thresholds seen in typical situations. A potential dependence of accelerated particle breakdown on substrate bandgap may suggest that the underlying physical process is similar to that seen for CW laser breakdown of contaminated optical coatings.
利用激光加速粒子对不同带隙介质基板进行微机械钻孔
连续波(CW)激光加速吸收粒子会引发微加工钻孔的灾难性破坏。该工艺使用不锈钢,PMMA和二氧化硅颗粒与熔融二氧化硅,蓝宝石和尖晶石衬底进行了测试。激光功率密度低至250kW/cm2,远低于典型情况下的损伤阈值。加速粒子击穿对基片带隙的潜在依赖可能表明,潜在的物理过程类似于连续波激光击穿污染光学涂层的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信