Modernizing Analytics for Melanoma with a Large-Scale Research Dataset

Aaron N. Richter, T. Khoshgoftaar
{"title":"Modernizing Analytics for Melanoma with a Large-Scale Research Dataset","authors":"Aaron N. Richter, T. Khoshgoftaar","doi":"10.1109/IRI.2017.45","DOIUrl":null,"url":null,"abstract":"We present the Modernizing Analytics for MELanoma (MAMEL) dataset: a real-world, dermatologyspecific research dataset specifically crafted to advance data mining and machine learning research in the field of melanoma diagnosis, analysis, and treatment. This dataset was collected and curated from Modernizing Medicine’s EMA DermatologyTM application, a cloud-based Electronic Health Record (EHR) platform. A big data processing architecture, built on Apache Hadoop and Apache Spark, was used to collect all patient data, identify patients for the MAMEL dataset, and create and document all data elements. This paper outlines the application and data processing architectures, provides an exploratory analysis of data elements available in MAMEL, and discusses avenues for using this dataset in clinical decision support applications for melanoma.","PeriodicalId":254330,"journal":{"name":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2017.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present the Modernizing Analytics for MELanoma (MAMEL) dataset: a real-world, dermatologyspecific research dataset specifically crafted to advance data mining and machine learning research in the field of melanoma diagnosis, analysis, and treatment. This dataset was collected and curated from Modernizing Medicine’s EMA DermatologyTM application, a cloud-based Electronic Health Record (EHR) platform. A big data processing architecture, built on Apache Hadoop and Apache Spark, was used to collect all patient data, identify patients for the MAMEL dataset, and create and document all data elements. This paper outlines the application and data processing architectures, provides an exploratory analysis of data elements available in MAMEL, and discusses avenues for using this dataset in clinical decision support applications for melanoma.
使用大规模研究数据集实现黑色素瘤的现代化分析
我们介绍了黑色素瘤的现代化分析(MAMEL)数据集:一个真实世界的,特定于皮肤病学的研究数据集,专门用于推进黑色素瘤诊断,分析和治疗领域的数据挖掘和机器学习研究。该数据集是从Modernizing Medicine的EMA DermatologyTM应用程序(基于云的电子健康记录(EHR)平台)收集和整理的。基于Apache Hadoop和Apache Spark的大数据处理架构用于收集所有患者数据,为MAMEL数据集识别患者,并创建和记录所有数据元素。本文概述了应用和数据处理架构,对MAMEL中可用的数据元素进行了探索性分析,并讨论了在黑色素瘤的临床决策支持应用中使用该数据集的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信