Applying Long-Short Term Memory Recurrent Neural Networks for Real-Time Stroke Recognition

Emanuele Ledda, L. D. Spano
{"title":"Applying Long-Short Term Memory Recurrent Neural Networks for Real-Time Stroke Recognition","authors":"Emanuele Ledda, L. D. Spano","doi":"10.1145/3459926.3464754","DOIUrl":null,"url":null,"abstract":"This note discusses how to build a real-time recognizer for stroke gestures based on Long Short Term Memory Recurrent Neural Networks. The recognizer provides both the gesture class prediction and the completion percentage estimation for each point in the stroke while the user is performing it. We considered the stroke vocabulary of the $1 and $N datasets, and we defined four different architectures. We trained them using synthetic data, and we assessed the recognition accuracy on the original $1 and $N datasets. The results show an accuracy comparable with state of the art approaches classifying the stroke when completed, and a good precision in the completion percentage estimation.","PeriodicalId":171639,"journal":{"name":"Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459926.3464754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This note discusses how to build a real-time recognizer for stroke gestures based on Long Short Term Memory Recurrent Neural Networks. The recognizer provides both the gesture class prediction and the completion percentage estimation for each point in the stroke while the user is performing it. We considered the stroke vocabulary of the $1 and $N datasets, and we defined four different architectures. We trained them using synthetic data, and we assessed the recognition accuracy on the original $1 and $N datasets. The results show an accuracy comparable with state of the art approaches classifying the stroke when completed, and a good precision in the completion percentage estimation.
长短期记忆递归神经网络在脑卒中实时识别中的应用
本文讨论了如何建立一个基于长短期记忆递归神经网络的笔画手势实时识别器。识别器提供手势类预测,并在用户执行时对笔画中的每个点进行完成百分比估计。我们考虑了$1和$N数据集的笔画词汇表,并定义了四种不同的体系结构。我们使用合成数据训练它们,我们评估了原始$1和$N数据集的识别准确性。结果表明,准确度可与最先进的分类方法相媲美,并且在完成百分比估计中具有良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信