More efficient sparsity-inducing algorithms using inexact gradient

A. Rakotomamonjy, Sokol Koço, L. Ralaivola
{"title":"More efficient sparsity-inducing algorithms using inexact gradient","authors":"A. Rakotomamonjy, Sokol Koço, L. Ralaivola","doi":"10.1109/EUSIPCO.2015.7362475","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the problem of adapting a set of classic sparsity-inducing methods to cases when the gradient of the objective function is either difficult or very expensive to compute. Our contributions are two-fold: first, we propose methodologies for computing fair estimations of inexact gradients, second we propose novel stopping criteria for computing these gradients. For each contribution we provide theoretical backgrounds and justifications. In the experimental part, we study the impact of the proposed methods for two well-known algorithms, Frank-Wolfe and Orthogonal Matching Pursuit. Results on toy datasets show that inexact gradients can be as useful as exact ones provided the appropriate stopping criterion is used.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we tackle the problem of adapting a set of classic sparsity-inducing methods to cases when the gradient of the objective function is either difficult or very expensive to compute. Our contributions are two-fold: first, we propose methodologies for computing fair estimations of inexact gradients, second we propose novel stopping criteria for computing these gradients. For each contribution we provide theoretical backgrounds and justifications. In the experimental part, we study the impact of the proposed methods for two well-known algorithms, Frank-Wolfe and Orthogonal Matching Pursuit. Results on toy datasets show that inexact gradients can be as useful as exact ones provided the appropriate stopping criterion is used.
使用不精确梯度的更有效的稀疏性诱导算法
在本文中,我们解决了一组经典稀疏性诱导方法的问题,当目标函数的梯度计算困难或非常昂贵时。我们的贡献有两个方面:首先,我们提出了计算不精确梯度的公平估计的方法,其次,我们提出了计算这些梯度的新停止准则。对于每一个贡献,我们都提供了理论背景和理由。在实验部分,我们研究了所提方法对Frank-Wolfe和正交匹配追踪两种知名算法的影响。在玩具数据集上的结果表明,如果使用适当的停止准则,不精确梯度可以和精确梯度一样有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信