An Empirical Comparison of Cross-Validation Procedures for Portfolio Selection

A. Paskaramoorthy, Terence L van Zyl, T. Gebbie
{"title":"An Empirical Comparison of Cross-Validation Procedures for Portfolio Selection","authors":"A. Paskaramoorthy, Terence L van Zyl, T. Gebbie","doi":"10.1109/CIFEr52523.2022.9776132","DOIUrl":null,"url":null,"abstract":"We present the constrained portfolio selection problem as a learning problem requiring hyper-parameter specification. In practice, hyper-parameters are typically selected using a validation procedure, of which there are several widely-used alternatives. However, the performance of different validation procedures is problem dependent and has not been investigated for the portfolio selection problem. This study examines the behaviour of common validation procedures, including holdout, k-fold cross-validation, Monte Carlo cross-validation, and repeated k-fold cross-validation for estimating performance and selecting hyper-parameters for constrained portfolio selection. The results demonstrate that repeated k-fold cross-validation is the best performing procedure and recommend using 5 repetitions with 3 ≤ k ≤ 10 in practice.","PeriodicalId":234473,"journal":{"name":"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFEr52523.2022.9776132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the constrained portfolio selection problem as a learning problem requiring hyper-parameter specification. In practice, hyper-parameters are typically selected using a validation procedure, of which there are several widely-used alternatives. However, the performance of different validation procedures is problem dependent and has not been investigated for the portfolio selection problem. This study examines the behaviour of common validation procedures, including holdout, k-fold cross-validation, Monte Carlo cross-validation, and repeated k-fold cross-validation for estimating performance and selecting hyper-parameters for constrained portfolio selection. The results demonstrate that repeated k-fold cross-validation is the best performing procedure and recommend using 5 repetitions with 3 ≤ k ≤ 10 in practice.
投资组合选择交叉验证程序的实证比较
我们将有约束的投资组合选择问题作为一个需要超参数说明的学习问题。在实践中,通常使用验证过程来选择超参数,其中有几种广泛使用的替代方法。然而,不同的验证程序的性能是问题相关的,尚未对投资组合选择问题进行研究。本研究考察了常见验证程序的行为,包括保留、k倍交叉验证、蒙特卡罗交叉验证,以及用于估计性能和选择约束投资组合超参数的重复k倍交叉验证。结果表明,重复k-fold交叉验证是效果最好的方法,建议在实践中使用5次重复,3≤k≤10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信