Jurandir C. Lacerda Jr, Adolfo V. T. Cartaxo, A. Soares
{"title":"Algoritmo Baseado em Aprendizado de Máquina para Alocação de Núcleo em Redes Ópticas Elásticas com Multiplexação Espacial","authors":"Jurandir C. Lacerda Jr, Adolfo V. T. Cartaxo, A. Soares","doi":"10.5753/sbrc.2022.221965","DOIUrl":null,"url":null,"abstract":"Redes ópticas elásticas com multiplexação por divisão espacial (SDM-EON), usando fibras multi-núcleos (MCF), são promissoras para as futuras redes de transporte. Em MCFs, surge uma nova dimensão no problema de alocação de recursos: a alocação do núcleo. Este artigo propõe o algoritmo com aprendizado de máquina para escolha de núcleo (AMN) em SDM-EONs. Comparado com outras soluções e em cenário com baixa incidência de crosstalk, o AMN obteve ganhos de ao menos 25,35% em termos de probabilidade de bloqueio de requisição (PBR) e de ao menos 24,81% em termos de razão de dados bloqueados (RDB). Em cenário de alta incidência de crosstalk, o AMN obteve ganhos de ao menos 8,16% para PBR e de ao menos 9,28% para RDB.","PeriodicalId":367209,"journal":{"name":"Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2022)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2022.221965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Redes ópticas elásticas com multiplexação por divisão espacial (SDM-EON), usando fibras multi-núcleos (MCF), são promissoras para as futuras redes de transporte. Em MCFs, surge uma nova dimensão no problema de alocação de recursos: a alocação do núcleo. Este artigo propõe o algoritmo com aprendizado de máquina para escolha de núcleo (AMN) em SDM-EONs. Comparado com outras soluções e em cenário com baixa incidência de crosstalk, o AMN obteve ganhos de ao menos 25,35% em termos de probabilidade de bloqueio de requisição (PBR) e de ao menos 24,81% em termos de razão de dados bloqueados (RDB). Em cenário de alta incidência de crosstalk, o AMN obteve ganhos de ao menos 8,16% para PBR e de ao menos 9,28% para RDB.