Multi-objective optimization using a hybrid differential evolution algorithm

Xianpeng Wang, Lixin Tang
{"title":"Multi-objective optimization using a hybrid differential evolution algorithm","authors":"Xianpeng Wang, Lixin Tang","doi":"10.1109/CEC.2012.6256478","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid differential evolution algorithm for multi-objective optimization problems. One major feature of this hybrid multi-objective differential evolution (HMODE) algorithm is that it adopts subpopulations whose sizes are dynamically adapted during the evolution process. The second feature is that the HMODE adopts a new solution update mechanism instead of the standard one used in the traditional differential evolution. The HMODE uses multiple operators and assigns an operator to each subpopulation. The update of each subpopulation is based on the assigned operator. The third feature of the HMODE is that a self-adapt local search method is used to improve the external archive. Computational study on benchmark problems shows that the HMODE is competitive or superior to previous multi-objective algorithms in the literature.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a hybrid differential evolution algorithm for multi-objective optimization problems. One major feature of this hybrid multi-objective differential evolution (HMODE) algorithm is that it adopts subpopulations whose sizes are dynamically adapted during the evolution process. The second feature is that the HMODE adopts a new solution update mechanism instead of the standard one used in the traditional differential evolution. The HMODE uses multiple operators and assigns an operator to each subpopulation. The update of each subpopulation is based on the assigned operator. The third feature of the HMODE is that a self-adapt local search method is used to improve the external archive. Computational study on benchmark problems shows that the HMODE is competitive or superior to previous multi-objective algorithms in the literature.
基于混合差分进化算法的多目标优化
针对多目标优化问题,提出了一种混合差分进化算法。这种混合多目标差分进化(HMODE)算法的一个主要特点是采用在进化过程中动态适应大小的子种群。第二个特点是HMODE采用了一种新的解决方案更新机制,而不是传统差分进化中使用的标准机制。HMODE使用多个操作符,并为每个子种群分配一个操作符。每个子种群的更新基于指定的算子。HMODE的第三个特点是使用自适应的局部搜索方法来改进外部存档。对基准问题的计算研究表明,HMODE与文献中已有的多目标算法相比具有竞争力或优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信