Frame Rate Latency Reduction for Real-time Vehicle Tracking using Network Cameras

Jonathan Paul C. Cempron, Carlo Migel Bautista, G. Cu, J. Ilao
{"title":"Frame Rate Latency Reduction for Real-time Vehicle Tracking using Network Cameras","authors":"Jonathan Paul C. Cempron, Carlo Migel Bautista, G. Cu, J. Ilao","doi":"10.1109/TENSYMP52854.2021.9550916","DOIUrl":null,"url":null,"abstract":"Traffic monitoring and vehicle counting systems that use surveillance cameras employ several computer vision techniques, one of which is object tracking, which approximates the trajectory of the vehicle throughout the scene. However, a major challenge in processing videos from network camera feeds is the irregular and low frame rates, affecting the performance of object tracking. In this paper, we present a concurrent implementation framework intended to increase the input network video frame rate.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic monitoring and vehicle counting systems that use surveillance cameras employ several computer vision techniques, one of which is object tracking, which approximates the trajectory of the vehicle throughout the scene. However, a major challenge in processing videos from network camera feeds is the irregular and low frame rates, affecting the performance of object tracking. In this paper, we present a concurrent implementation framework intended to increase the input network video frame rate.
利用网络摄像机降低实时车辆跟踪的帧率延迟
使用监控摄像头的交通监控和车辆计数系统采用了几种计算机视觉技术,其中之一是物体跟踪,它在整个场景中近似车辆的轨迹。然而,处理来自网络摄像机馈送的视频的一个主要挑战是不规则和低帧率,影响目标跟踪的性能。在本文中,我们提出了一个旨在提高输入网络视频帧率的并发实现框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信