{"title":"Pathfinder3D: A framework for exploring early thermal tradeoffs in 3DIC","authors":"S. Priyadarshi, W. R. Davis, P. Franzon","doi":"10.1109/ICICDT.2014.6838612","DOIUrl":null,"url":null,"abstract":"Three dimensional integration technologies offer significant potential to improve performance, performance per unit power and integration density. However, increased power density and thermal resistances leading to higher on-chip temperature is imposing several implementation challenges and restricting widespread adaptation of this technology. This necessitates the need for CAD flows and tools facilitating early thermal evaluation of possible 3D design choices and thermal management techniques. This paper presents a CAD flow and associated framework called Pathfinder3D, which facilitates physically-aware system-level thermal simulation of 3DICs. Usage of Pathfinder3D is shown using a case study comparing thermal profiles of 2D and three 3D implementations of a quadcore chip multiprocessor.","PeriodicalId":325020,"journal":{"name":"2014 IEEE International Conference on IC Design & Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on IC Design & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2014.6838612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Three dimensional integration technologies offer significant potential to improve performance, performance per unit power and integration density. However, increased power density and thermal resistances leading to higher on-chip temperature is imposing several implementation challenges and restricting widespread adaptation of this technology. This necessitates the need for CAD flows and tools facilitating early thermal evaluation of possible 3D design choices and thermal management techniques. This paper presents a CAD flow and associated framework called Pathfinder3D, which facilitates physically-aware system-level thermal simulation of 3DICs. Usage of Pathfinder3D is shown using a case study comparing thermal profiles of 2D and three 3D implementations of a quadcore chip multiprocessor.