On multiple-valued logic functions monotonic with respect to ambiguity

K. Nakashima, N. Takagi
{"title":"On multiple-valued logic functions monotonic with respect to ambiguity","authors":"K. Nakashima, N. Takagi","doi":"10.1109/ISMVL.1992.186801","DOIUrl":null,"url":null,"abstract":"The authors define a partial-ordering relation with respect to ambiguity with the greatest element 1/2 and minimal elements 0, 1 in the set of truth values V=(0,1/(p-1),. . ., 1/2,. . ., (p-2)/(p-1), 1), and the p-valued logic functions monotonic with respect to ambiguity, based on this ordering relation. A necessary and sufficient condition for p-valued logic functions to be monotonic with respect to ambiguity is presented along with the proofs, and their logic expressions using unary operators defined in the partial-ordering relation are provided.<<ETX>>","PeriodicalId":127091,"journal":{"name":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1992.186801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors define a partial-ordering relation with respect to ambiguity with the greatest element 1/2 and minimal elements 0, 1 in the set of truth values V=(0,1/(p-1),. . ., 1/2,. . ., (p-2)/(p-1), 1), and the p-valued logic functions monotonic with respect to ambiguity, based on this ordering relation. A necessary and sufficient condition for p-valued logic functions to be monotonic with respect to ambiguity is presented along with the proofs, and their logic expressions using unary operators defined in the partial-ordering relation are provided.<>
关于多值逻辑函数在歧义性方面的单调性
在真值集合V=(0,1/(p-1),…,1/ 2,…,(p-2)/(p-1), 1)中,定义了最大元素1/2和最小元素0,1的关于歧义的偏序关系,并在此序关系的基础上定义了关于歧义的p值逻辑函数单调性。给出了p值逻辑函数在模糊性方面是单调的一个充分必要条件,并给出了它们在偏序关系中定义一元算子的逻辑表达式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信