Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators

Hidehiko Ichimura, O. Linton
{"title":"Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators","authors":"Hidehiko Ichimura, O. Linton","doi":"10.1920/WP.CEM.2001.0401","DOIUrl":null,"url":null,"abstract":"We investigate the performance of a class of semiparametric estimators of the treatment effect via asymptotic expansions. We derive approximations to the first two moments of the estimator that are valid to 'second order'. We use these approximations to define a method of bandwidth selection. We also propose a degrees- of-freedom like bias correction that improves the second order properties of the estimator but without requiring estimation of higher order derivatives of the unknown propensity score. We provide some numerical calibrations of the results.","PeriodicalId":345385,"journal":{"name":"London School of Economics & Political Science STICERD Research Papers Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"London School of Economics & Political Science STICERD Research Papers Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2001.0401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

We investigate the performance of a class of semiparametric estimators of the treatment effect via asymptotic expansions. We derive approximations to the first two moments of the estimator that are valid to 'second order'. We use these approximations to define a method of bandwidth selection. We also propose a degrees- of-freedom like bias correction that improves the second order properties of the estimator but without requiring estimation of higher order derivatives of the unknown propensity score. We provide some numerical calibrations of the results.
一类半参数规划估计量的渐近展开式
我们通过渐近展开式研究了一类半参数估计的治疗效果的性能。我们导出了对二阶有效的估计量的前两个矩的近似。我们用这些近似定义了一种带宽选择方法。我们还提出了一种类似自由度的偏差校正,它改善了估计器的二阶性质,但不需要估计未知倾向分数的高阶导数。我们提供了一些数值校准的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信