{"title":"Engineering the Color and the Donor-Acceptor Behavior in Nanowires: Blend Versus Coaxial Geometry","authors":"M. Mbarek, K. Alimi","doi":"10.5772/intechopen.94214","DOIUrl":null,"url":null,"abstract":"The blending or the bilayering of two complementary species are the dominant methods for in-solution-processed thin film devices to get a strong donor-acceptor behavior. They propose opposite strategies for the respective arrangement of the two species, a central point for energy and/or charge transfer. In this work, we propose to engineer at the scale of the exciton diffusion length the organization of a donor (poly(vinyl-carbazole), PVK) and an acceptor (poly(para-phenylene-vinylene), PPV) in a nanowire geometry. A two-step template strategy was used to fabricate coaxial nanowires with PPV and PVK, alternatively as the core or the shell material. Their stationary and time-resolved photoluminescence properties were investigated and compared to the case of PVK-PPV blend. Their respective characteristics are direct evidences of the dominant mechanisms responsible for the emission properties.","PeriodicalId":377742,"journal":{"name":"Nanowires - Recent Progress","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanowires - Recent Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The blending or the bilayering of two complementary species are the dominant methods for in-solution-processed thin film devices to get a strong donor-acceptor behavior. They propose opposite strategies for the respective arrangement of the two species, a central point for energy and/or charge transfer. In this work, we propose to engineer at the scale of the exciton diffusion length the organization of a donor (poly(vinyl-carbazole), PVK) and an acceptor (poly(para-phenylene-vinylene), PPV) in a nanowire geometry. A two-step template strategy was used to fabricate coaxial nanowires with PPV and PVK, alternatively as the core or the shell material. Their stationary and time-resolved photoluminescence properties were investigated and compared to the case of PVK-PPV blend. Their respective characteristics are direct evidences of the dominant mechanisms responsible for the emission properties.