Andrea Petreto, Thomas Romera, F. Lemaitre, I. Masliah, B. Gaillard, Manuel Bouyer, Quentin L. Meunier, L. Lacassagne
{"title":"A New Real-Time Embedded Video Denoising Algorithm","authors":"Andrea Petreto, Thomas Romera, F. Lemaitre, I. Masliah, B. Gaillard, Manuel Bouyer, Quentin L. Meunier, L. Lacassagne","doi":"10.1109/DASIP48288.2019.9049189","DOIUrl":null,"url":null,"abstract":"Many embedded applications rely on video processing or on video visualization. Noisy video is thus a major issue for such applications. However, video denoising requires a lot of computational effort and most of the state-of-the-art algorithms cannot be run in real-time at camera framerate. This article introduces a new real-time video denoising algorithm for embedded platforms called RTE-VD. We first compare its denoising capabilities with other online and offline algorithms. We show that RTE-VD can achieve real-time performance (25 frames per second) for qHD video (960⨯540 pixels) on embedded CPUs and the output image quality is comparable to state-of-the-art algorithms. In order to reach real-time denoising, we applied several high-level transforms and optimizations (SIMDization, multi-core parallelization, operator fusion and pipelining). We study the relation between computation time and power consumption on several embedded CPUs and show that it is possible to determine different frequency and core configurations in order to minimize either the computation time or the energy.","PeriodicalId":120855,"journal":{"name":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP48288.2019.9049189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Many embedded applications rely on video processing or on video visualization. Noisy video is thus a major issue for such applications. However, video denoising requires a lot of computational effort and most of the state-of-the-art algorithms cannot be run in real-time at camera framerate. This article introduces a new real-time video denoising algorithm for embedded platforms called RTE-VD. We first compare its denoising capabilities with other online and offline algorithms. We show that RTE-VD can achieve real-time performance (25 frames per second) for qHD video (960⨯540 pixels) on embedded CPUs and the output image quality is comparable to state-of-the-art algorithms. In order to reach real-time denoising, we applied several high-level transforms and optimizations (SIMDization, multi-core parallelization, operator fusion and pipelining). We study the relation between computation time and power consumption on several embedded CPUs and show that it is possible to determine different frequency and core configurations in order to minimize either the computation time or the energy.