Self-imposed Filter Bubble Model for Argumentative Dialogues

Annalena Aicher, Daniel Kornmüller, W. Minker, Stefan Ultes
{"title":"Self-imposed Filter Bubble Model for Argumentative Dialogues","authors":"Annalena Aicher, Daniel Kornmüller, W. Minker, Stefan Ultes","doi":"10.1145/3571884.3597131","DOIUrl":null,"url":null,"abstract":"During their information seeking people tend to filter out all the parts of the available information that do not fit their existing beliefs or opinions. In this paper we present a model for this “Self-imposed Filter Bubble” (SFB) consisting of four dimensions. Thereby, we aim to 1) estimate the probability of the user being caught in an SFB and consequently, 2) identify suitable clues to reduce this probability in the further course of a dialogue. Using an exemplary implementation in an argumentative dialogue system, we demonstrate the validity and applicability of this model in an online user study with 102 participants. These findings serve as a basis for developing a system strategy to break the user’s SFB and contribute to a sustainable and profound reflection on a topic from all viewpoints.","PeriodicalId":127379,"journal":{"name":"Proceedings of the 5th International Conference on Conversational User Interfaces","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Conversational User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571884.3597131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

During their information seeking people tend to filter out all the parts of the available information that do not fit their existing beliefs or opinions. In this paper we present a model for this “Self-imposed Filter Bubble” (SFB) consisting of four dimensions. Thereby, we aim to 1) estimate the probability of the user being caught in an SFB and consequently, 2) identify suitable clues to reduce this probability in the further course of a dialogue. Using an exemplary implementation in an argumentative dialogue system, we demonstrate the validity and applicability of this model in an online user study with 102 participants. These findings serve as a basis for developing a system strategy to break the user’s SFB and contribute to a sustainable and profound reflection on a topic from all viewpoints.
辩论对话的自我强加过滤气泡模型
在寻找信息的过程中,人们倾向于过滤掉所有不符合他们现有信念或观点的可用信息。在本文中,我们提出了一个由四个维度组成的“自施加过滤气泡”(SFB)模型。因此,我们的目标是1)估计用户陷入SFB的概率,并因此,2)识别合适的线索,以在对话的进一步过程中降低这种概率。我们在一个有102名参与者的在线用户研究中,使用一个议论性对话系统中的示例实现来证明该模型的有效性和适用性。这些发现可以作为制定打破用户SFB的系统策略的基础,并有助于从各个角度对一个主题进行可持续和深刻的反思。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信