Analysis of scoliosis trunk deformities using ICA

Mathias M. Adankon, J. Dansereau, H. Labelle, F. Cheriet
{"title":"Analysis of scoliosis trunk deformities using ICA","authors":"Mathias M. Adankon, J. Dansereau, H. Labelle, F. Cheriet","doi":"10.1109/ISSPA.2012.6310543","DOIUrl":null,"url":null,"abstract":"This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.
应用ICA分析脊柱侧凸躯干畸形
本文介绍了一种利用独立分量分析(ICA)分析脊柱侧凸躯干畸形的方法。我们的假设是ICA可以捕捉到躯干上可见的脊柱侧凸畸形。与主成分分析(PCA)不同,ICA给出局部形状变化,并假设数据分布不是正态分布。采用ICA对28例青少年特发性脊柱侧凸患者和28例健康受试者的56例三维躯干图像进行分析。首先,我们注意到独立分量捕获局部脊柱侧凸畸形,如肩部变异,肩胛骨不对称和腰部变形。其次,我们注意到不同的脊柱侧凸曲线类型具有特定独立成分的不同组合特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信