Estimating the severity of knee osteoarthritis using Deep Convolutional Neural Network based on Contrast Limited Adaptive Histogram Equalization technique

Amina A. Abdo, Wafa El-Tarhouni, Asma Fathi Abdulsalam, Abdelgader Bubaker Altajori
{"title":"Estimating the severity of knee osteoarthritis using Deep Convolutional Neural Network based on Contrast Limited Adaptive Histogram Equalization technique","authors":"Amina A. Abdo, Wafa El-Tarhouni, Asma Fathi Abdulsalam, Abdelgader Bubaker Altajori","doi":"10.1109/ICEMIS56295.2022.9914285","DOIUrl":null,"url":null,"abstract":"Osteoarthritis is a degenerative joint disease that affects larger joints, including the knee, foot, hip, and spine by infecting the cartilage, which causes bones to rub against each other in extreme pain. Knee osteoarthritis (KOA) manual inspections demand a skilled physician to examine the x-ray image. In this paper, a method for detecting the severity of knee osteoarthritis using a Deep Convolutional Neural Network (3D CNN) is proposed in order to benefit physicians by examining the X-ray images. Here, the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is used to enhance contrast in images, and this strengthens the current approach. This study presents two models: one for identifying and categorizing normal (KL 0,1) and osteoarthritic results (KL 2, 3, 4). The second model is to assist in distinguishing between severe grades (KL 3, 4) and non-severe grades (KL 2) or normal findings (KL 0,1). For examination, X-ray images from the Knee Osteoarthritis severity grading dataset and the Osteoarthritis Initiative (OAI) dataset are used. Experimental results have demonstrated that the proposed technique achieves accuracy rate of 85.50%, outperforming a number of existing approaches.","PeriodicalId":191284,"journal":{"name":"2022 International Conference on Engineering & MIS (ICEMIS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS56295.2022.9914285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Osteoarthritis is a degenerative joint disease that affects larger joints, including the knee, foot, hip, and spine by infecting the cartilage, which causes bones to rub against each other in extreme pain. Knee osteoarthritis (KOA) manual inspections demand a skilled physician to examine the x-ray image. In this paper, a method for detecting the severity of knee osteoarthritis using a Deep Convolutional Neural Network (3D CNN) is proposed in order to benefit physicians by examining the X-ray images. Here, the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is used to enhance contrast in images, and this strengthens the current approach. This study presents two models: one for identifying and categorizing normal (KL 0,1) and osteoarthritic results (KL 2, 3, 4). The second model is to assist in distinguishing between severe grades (KL 3, 4) and non-severe grades (KL 2) or normal findings (KL 0,1). For examination, X-ray images from the Knee Osteoarthritis severity grading dataset and the Osteoarthritis Initiative (OAI) dataset are used. Experimental results have demonstrated that the proposed technique achieves accuracy rate of 85.50%, outperforming a number of existing approaches.
基于对比度有限自适应直方图均衡化技术的深度卷积神经网络估计膝关节骨性关节炎的严重程度
骨关节炎是一种退化性关节疾病,通过感染软骨导致骨头相互摩擦,产生剧痛,从而影响较大的关节,包括膝盖、脚、臀部和脊柱。膝骨关节炎(KOA)人工检查需要熟练的医生检查x线图像。本文提出了一种使用深度卷积神经网络(3D CNN)检测膝关节骨关节炎严重程度的方法,以便通过检查x射线图像使医生受益。在这里,对比度限制自适应直方图均衡化(CLAHE)技术被用来增强图像的对比度,这加强了当前的方法。本研究提出了两个模型:一个用于识别和分类正常(kl0,1)和骨关节炎结果(kl2,3,4)。第二个模型用于帮助区分严重级别(kl3,4)和非严重级别(kl2)或正常结果(kl0,1)。为了进行检查,使用了膝关节骨关节炎严重程度分级数据集和骨关节炎倡议(OAI)数据集的x射线图像。实验结果表明,该方法的准确率达到了85.50%,优于现有的许多方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信