3D hand gesture recognition based on Polar Rotation Feature and Linear Discriminant Analysis

Yiding Wang, Lin Zhang
{"title":"3D hand gesture recognition based on Polar Rotation Feature and Linear Discriminant Analysis","authors":"Yiding Wang, Lin Zhang","doi":"10.1109/ICICIP.2013.6568070","DOIUrl":null,"url":null,"abstract":"A new method based on Polar Rotation Feature and Linear Discriminant Analysis for hand gesture recognition is proposed in this paper. The gesture images in our system are derived from a 3D laser scanner which generates depth data. Hand area segmentation, hole-filling and normalization are done first, then a feature of the polar rotation distance is extracted via polar-coordinate transformation. Utilized PCA+LDA as the classifier. Experiences show our algorithm is robust and accurate. Finally we achieve 96.67% recognition rates under a set of six kinds of hand gestures.","PeriodicalId":130494,"journal":{"name":"2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2013.6568070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A new method based on Polar Rotation Feature and Linear Discriminant Analysis for hand gesture recognition is proposed in this paper. The gesture images in our system are derived from a 3D laser scanner which generates depth data. Hand area segmentation, hole-filling and normalization are done first, then a feature of the polar rotation distance is extracted via polar-coordinate transformation. Utilized PCA+LDA as the classifier. Experiences show our algorithm is robust and accurate. Finally we achieve 96.67% recognition rates under a set of six kinds of hand gestures.
基于极旋转特征和线性判别分析的三维手势识别
提出了一种基于极旋转特征和线性判别分析的手势识别新方法。我们系统中的手势图像来自3D激光扫描仪,该扫描仪产生深度数据。首先进行手部区域分割、补孔和归一化,然后通过极坐标变换提取极旋转距离特征。采用PCA+LDA作为分类器。实践表明,该算法具有较好的鲁棒性和准确性。最后,我们在六种手势下的识别率达到96.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信