Myeongjin Kwak, Jungwon Lee, Hyoju Seo, Mingyu Sung, Yongtae Kim
{"title":"Training and Inference using Approximate Floating-Point Arithmetic for Energy Efficient Spiking Neural Network Processors","authors":"Myeongjin Kwak, Jungwon Lee, Hyoju Seo, Mingyu Sung, Yongtae Kim","doi":"10.1109/ICEIC51217.2021.9369724","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic analysis of spiking neural network (SNN) performance with reduced computation precisions using approximate adders. We propose an IEEE 754-based approximate floating-point adder that applies to the leaky integrate-and-fire (LIF) neuron-based SNN operation for both training and inference. The experimental results under a two-layer SNN for MNIST handwritten digit recognition application show that 4-bit exact mantissa adder with 19-bit approximation for lower-part OR adder (LOA), instead of 23-bit full-precision mantissa adder, can be exploited to maintain good classification accuracy. When adopted LOA as mantissa adder, it can achieve up to 74.1% and 96.5% of power and energy saving, respectively.","PeriodicalId":170294,"journal":{"name":"2021 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC51217.2021.9369724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a systematic analysis of spiking neural network (SNN) performance with reduced computation precisions using approximate adders. We propose an IEEE 754-based approximate floating-point adder that applies to the leaky integrate-and-fire (LIF) neuron-based SNN operation for both training and inference. The experimental results under a two-layer SNN for MNIST handwritten digit recognition application show that 4-bit exact mantissa adder with 19-bit approximation for lower-part OR adder (LOA), instead of 23-bit full-precision mantissa adder, can be exploited to maintain good classification accuracy. When adopted LOA as mantissa adder, it can achieve up to 74.1% and 96.5% of power and energy saving, respectively.