Training and Inference using Approximate Floating-Point Arithmetic for Energy Efficient Spiking Neural Network Processors

Myeongjin Kwak, Jungwon Lee, Hyoju Seo, Mingyu Sung, Yongtae Kim
{"title":"Training and Inference using Approximate Floating-Point Arithmetic for Energy Efficient Spiking Neural Network Processors","authors":"Myeongjin Kwak, Jungwon Lee, Hyoju Seo, Mingyu Sung, Yongtae Kim","doi":"10.1109/ICEIC51217.2021.9369724","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic analysis of spiking neural network (SNN) performance with reduced computation precisions using approximate adders. We propose an IEEE 754-based approximate floating-point adder that applies to the leaky integrate-and-fire (LIF) neuron-based SNN operation for both training and inference. The experimental results under a two-layer SNN for MNIST handwritten digit recognition application show that 4-bit exact mantissa adder with 19-bit approximation for lower-part OR adder (LOA), instead of 23-bit full-precision mantissa adder, can be exploited to maintain good classification accuracy. When adopted LOA as mantissa adder, it can achieve up to 74.1% and 96.5% of power and energy saving, respectively.","PeriodicalId":170294,"journal":{"name":"2021 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC51217.2021.9369724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a systematic analysis of spiking neural network (SNN) performance with reduced computation precisions using approximate adders. We propose an IEEE 754-based approximate floating-point adder that applies to the leaky integrate-and-fire (LIF) neuron-based SNN operation for both training and inference. The experimental results under a two-layer SNN for MNIST handwritten digit recognition application show that 4-bit exact mantissa adder with 19-bit approximation for lower-part OR adder (LOA), instead of 23-bit full-precision mantissa adder, can be exploited to maintain good classification accuracy. When adopted LOA as mantissa adder, it can achieve up to 74.1% and 96.5% of power and energy saving, respectively.
基于近似浮点算法的高效尖峰神经网络处理器训练与推理
本文用近似加法器系统地分析了尖峰神经网络(SNN)在降低计算精度的情况下的性能。我们提出了一种基于IEEE 754的近似浮点加法器,该加法器适用于基于泄漏集成和发射(LIF)神经元的SNN运算,用于训练和推理。在两层SNN下的MNIST手写数字识别应用实验结果表明,利用4位精确尾数加法器与19位近似的下部或加法器(LOA)代替23位全精度尾数加法器,可以保持较好的分类精度。采用LOA作为尾数加法器,可分别达到74.1%和96.5%的节电和节能效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信