Methods for evolving robust distributed robot control software: coevolutionary and single population techniques

B. Dolin, F. H. Bennett, E. Rieffel
{"title":"Methods for evolving robust distributed robot control software: coevolutionary and single population techniques","authors":"B. Dolin, F. H. Bennett, E. Rieffel","doi":"10.1109/EH.2001.937943","DOIUrl":null,"url":null,"abstract":"Previous work on evolving distributed control software for modular robots has resulted in solutions that do not generalize well to unseen test cases. In this work, we seek general solutions to an entire space of test cases. Each test case is a specific world configuration with a passage through which the modular robot must move. The space of test cases is extremely large, so a given training set can only be a sparse sample of this space. We look at several approaches for dealing with the problem of determining an effective training set: using a fixed set throughout a run, sampling randomly at each generation, and using coevolutionary approaches to evolve a population of test worlds. For this problem, random sampling outperformed the fixed sampling technique and did at least as well as the coevolutionary techniques we considered.","PeriodicalId":130694,"journal":{"name":"Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2001.937943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Previous work on evolving distributed control software for modular robots has resulted in solutions that do not generalize well to unseen test cases. In this work, we seek general solutions to an entire space of test cases. Each test case is a specific world configuration with a passage through which the modular robot must move. The space of test cases is extremely large, so a given training set can only be a sparse sample of this space. We look at several approaches for dealing with the problem of determining an effective training set: using a fixed set throughout a run, sampling randomly at each generation, and using coevolutionary approaches to evolve a population of test worlds. For this problem, random sampling outperformed the fixed sampling technique and did at least as well as the coevolutionary techniques we considered.
鲁棒分布式机器人控制软件的进化方法:协同进化和单种群技术
以前对模块化机器人的分布式控制软件的改进工作导致解决方案不能很好地推广到看不见的测试用例。在这项工作中,我们寻求整个测试用例空间的通用解决方案。每个测试用例都是一个特定的世界配置,带有模块化机器人必须通过的通道。测试用例的空间非常大,所以给定的训练集只能是这个空间的一个稀疏样本。我们研究了几种处理确定有效训练集问题的方法:在整个运行过程中使用固定集,在每一代随机抽样,以及使用共同进化方法来进化测试世界的总体。对于这个问题,随机抽样优于固定抽样技术,并且至少与我们考虑的共同进化技术一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信