Multi-Vehicle Tracking and Speed Estimation Model using Deep Learning

Prajwal, Navaneeth, Tharun, Amit Kumar
{"title":"Multi-Vehicle Tracking and Speed Estimation Model using Deep Learning","authors":"Prajwal, Navaneeth, Tharun, Amit Kumar","doi":"10.1145/3549206.3549254","DOIUrl":null,"url":null,"abstract":"Speed estimation of vehicles is one of the prime application of speed estimation of moving objects. The YOLOv5 model has proven to have a very good accuracy in detecting moving objects in real-time. The vehicles on the road are extracted from each frame of the video by running it through a custom YOLOv5 object detector. The YOLO model splits the frame into a grid and each grid detects a vehicle within itself. An instance identifier tracks the vehicle across the frames. The tracking algorithm computes deep features for every bounding box and utilizes the similarities within the deep features to identify and track the object. The pixel per meter metric has to adjusted based on perspective after which the speed of the vehicle can be estimated. Finally a comparison of our model metrics with the existing state of the art models is provided.","PeriodicalId":199675,"journal":{"name":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549206.3549254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Speed estimation of vehicles is one of the prime application of speed estimation of moving objects. The YOLOv5 model has proven to have a very good accuracy in detecting moving objects in real-time. The vehicles on the road are extracted from each frame of the video by running it through a custom YOLOv5 object detector. The YOLO model splits the frame into a grid and each grid detects a vehicle within itself. An instance identifier tracks the vehicle across the frames. The tracking algorithm computes deep features for every bounding box and utilizes the similarities within the deep features to identify and track the object. The pixel per meter metric has to adjusted based on perspective after which the speed of the vehicle can be estimated. Finally a comparison of our model metrics with the existing state of the art models is provided.
基于深度学习的多车跟踪和速度估计模型
车辆速度估计是运动物体速度估计的主要应用之一。YOLOv5模型已被证明在实时检测运动物体方面具有非常好的准确性。通过定制的YOLOv5对象检测器,从视频的每一帧中提取道路上的车辆。YOLO模型将框架分成一个网格,每个网格在其内部检测车辆。实例标识符跨帧跟踪车辆。跟踪算法计算每个边界框的深度特征,并利用深度特征之间的相似性来识别和跟踪目标。每米像素度量必须根据视角进行调整,之后可以估计车辆的速度。最后,将我们的模型度量与现有技术模型的状态进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信