39fJ Analog Artificial Neural Network for Breast Cancer Classification in 65nm CMOS

Ruobing Hua, A. Sanyal
{"title":"39fJ Analog Artificial Neural Network for Breast Cancer Classification in 65nm CMOS","authors":"Ruobing Hua, A. Sanyal","doi":"10.1109/MWSCAS.2019.8885149","DOIUrl":null,"url":null,"abstract":"An analog artificial neural network (ANN) classifier using a common-source amplifier based nonlinear activation function is presented in this work. A shallow ANN is designed in 65nm CMOS to perform binary classification on breast cancer dataset and identify each patient data as either benign or malignant. Use of common-source amplifier structure simplifies the ANN and results in only 39fJ/classification at 0.8V power supply and core area of only 240μm2. The classifier is trained using Matlab and validated using Spectre simulations.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An analog artificial neural network (ANN) classifier using a common-source amplifier based nonlinear activation function is presented in this work. A shallow ANN is designed in 65nm CMOS to perform binary classification on breast cancer dataset and identify each patient data as either benign or malignant. Use of common-source amplifier structure simplifies the ANN and results in only 39fJ/classification at 0.8V power supply and core area of only 240μm2. The classifier is trained using Matlab and validated using Spectre simulations.
39fJ基于65nm CMOS的乳腺癌分类模拟人工神经网络
本文提出了一种基于非线性激活函数的共源放大器模拟人工神经网络分类器。设计了一种基于65nm CMOS的浅神经网络,用于对乳腺癌数据进行二值分类,并将每个患者数据识别为良性或恶性。采用共源放大器结构,简化了人工神经网络,在0.8V电源下的分类功率仅为39fJ/,核心区面积仅为240μm2。该分类器使用Matlab进行训练,并使用Spectre仿真进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信