{"title":"Vehicle suspension vibration control using recurrent neural networks","authors":"H. Guan, Xinyi Le, Jun Wang","doi":"10.1109/ICICIP.2014.7010293","DOIUrl":null,"url":null,"abstract":"This paper presents an application of vibration control to a half-car model using recurrent neural networks. The robust vibration control is formulated as equality constrained optimization problem. Simulation results show that the close-loop system has good response performance in the presence of disturbances generated by an isolated bump. The study shows potential in using neural networks for the active vibration control in precision machine design.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an application of vibration control to a half-car model using recurrent neural networks. The robust vibration control is formulated as equality constrained optimization problem. Simulation results show that the close-loop system has good response performance in the presence of disturbances generated by an isolated bump. The study shows potential in using neural networks for the active vibration control in precision machine design.