Comparing U-Net Convolutional Network with Mask R-CNN in Agricultural Area Segmentation on Satellite Images

T. P. Quoc, Tam Tran Linh, Thu Nguyen Tran Minh
{"title":"Comparing U-Net Convolutional Network with Mask R-CNN in Agricultural Area Segmentation on Satellite Images","authors":"T. P. Quoc, Tam Tran Linh, Thu Nguyen Tran Minh","doi":"10.1109/NICS51282.2020.9335856","DOIUrl":null,"url":null,"abstract":"Deep learning is the fastest-growing trend in statistical analysis of remote sensing data. Deep learning models are used for information processing of spectral steps, identification statistics, segmentation and classification of the objects in satellite images, etc. Image segmentation could help to make the object statistics more accurate by separating the objects from the background. In this paper, we propose knowledge of Mask R-CNN and U-Net in satellite imagery segmentation, and we also make an experiment for these models to show the appropriateness in this field. Experimental result of the mean average precision (mAP) on dataset of Vietnam satellite images is 95.21% for Mask R-CNN and 92.69% for U-Net.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep learning is the fastest-growing trend in statistical analysis of remote sensing data. Deep learning models are used for information processing of spectral steps, identification statistics, segmentation and classification of the objects in satellite images, etc. Image segmentation could help to make the object statistics more accurate by separating the objects from the background. In this paper, we propose knowledge of Mask R-CNN and U-Net in satellite imagery segmentation, and we also make an experiment for these models to show the appropriateness in this field. Experimental result of the mean average precision (mAP) on dataset of Vietnam satellite images is 95.21% for Mask R-CNN and 92.69% for U-Net.
U-Net卷积网络与掩模R-CNN在卫星图像农业区域分割中的比较
深度学习是遥感数据统计分析中发展最快的趋势。利用深度学习模型对卫星图像中目标进行光谱步长信息处理、识别统计、分割分类等。图像分割可以通过将目标与背景分离,使目标统计更加准确。在本文中,我们提出了Mask R-CNN和U-Net在卫星图像分割中的知识,并对这些模型进行了实验,以证明这些模型在该领域的适用性。在越南卫星图像数据集上,Mask R-CNN的平均精度为95.21%,U-Net的平均精度为92.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信