Structured phase margin for stability analysis of linear systems with time-delay

V. Chellaboina, W. Haddad, Sushma Kalavagunta, A. Kamath
{"title":"Structured phase margin for stability analysis of linear systems with time-delay","authors":"V. Chellaboina, W. Haddad, Sushma Kalavagunta, A. Kamath","doi":"10.1109/CDC.2003.1272432","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the notion of structured phase margin for characterizing stability margins in terms of a nominal plant transfer function in the presence of unknown structured phase perturbations. Furthermore, since the structured phase margin may be difficult to compute in general, we derive a lower bound in terms of a generalized eigenvalue problem. This bound is constructed by choosing stability multipliers that are tailored to the structure of the phase uncertainty. Finally, using the structured phase margin framework developed in the paper, we present new and improved frequency-domain, delay-dependent stability criteria for stability analysis of time-delay systems.","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1272432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we introduce the notion of structured phase margin for characterizing stability margins in terms of a nominal plant transfer function in the presence of unknown structured phase perturbations. Furthermore, since the structured phase margin may be difficult to compute in general, we derive a lower bound in terms of a generalized eigenvalue problem. This bound is constructed by choosing stability multipliers that are tailored to the structure of the phase uncertainty. Finally, using the structured phase margin framework developed in the paper, we present new and improved frequency-domain, delay-dependent stability criteria for stability analysis of time-delay systems.
带时滞线性系统稳定性分析的结构化相位裕度
在本文中,我们引入了结构化相位裕度的概念,用于在存在未知结构化相位扰动的情况下,用标称植物传递函数来表征稳定性裕度。此外,由于一般情况下结构相裕度难以计算,我们推导了一个广义特征值问题的下界。该边界是通过选择适合相位不确定性结构的稳定性乘法器来构建的。最后,利用本文提出的结构化相位裕度框架,我们提出了新的和改进的频域延迟相关稳定性准则,用于分析时滞系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信